• Title/Summary/Keyword: Single PCR

Search Result 1,032, Processing Time 0.025 seconds

Polymerase chain reaction for the detection of Newcastle disease virus (닭 뉴캐슬병 바이러스의 특이 검출을 위한 polymerase chain reaction 법)

  • Yeo, Sang-geon;Kim, Do-kyoung;Park, Seon-ja
    • Korean Journal of Veterinary Research
    • /
    • v.38 no.3
    • /
    • pp.565-573
    • /
    • 1998
  • To study the specific tools for the diagnosis of Newcastle disease virus (NDV) in chicken, polymerase chain reaction (PCR) and its presumable conditions were evaluated for the detection of hemagglutinin-neuraminidase (HN) gene of NDV RNA. For these purposes, Kyojeongwon strain of the NDV was propagated in allantoic cavity of SPF embryonating chicken eggs, and viral RNA was extracted from fractionated virus after the allantoic fluids were ultracentrifuged with sucrose gradient. The first-strand cDNA was then made for the HN gene of NDV RNA by reverse transcription at $42^{\circ}C$ for 1 hour using specific primer complementary to the HN gene. The single-stranded cDNA was used as template in the PCR of the HN-DNA, and various conditions of the PCR were evaluated to set up method for the specific detection of the HN-DNA. The PCR conditions promising for the detection of HN gene consist of preheating at $94^{\circ}C$, 5 min, 30 cycles of denaturation at $94^{\circ}C$, 1 min, annealing at $55^{\circ}C$, 1 min and polymerization at $72^{\circ}C$, 2 min, and a cycle of extension at $72^{\circ}C$, 5 min. when NDVs of allantoic fluids without fractionation were applied to the above PCR condition, the HN genes were detected effectively not only from Kyojeongwon but from other velogenic strains such as Herts and a field isolate.

  • PDF

Identification of Brucella melitensis isolates originating from Mongolia and diagnostic real-time PCR evaluation using a specific SNP (몽골 유래 Brucella melitensis 동정 및 특이 SNP를 이용한 real-time PCR법에 의한 진단 평가)

  • Kang, Sung-Il;Kim, Ji-Yeon;Kim, Suk Mi;Lee, Jin Ju;Sung, So-Ra;Kim, Yeon-Hee;Jung, Suk Chan;Her, Moon
    • Korean Journal of Veterinary Research
    • /
    • v.55 no.2
    • /
    • pp.105-110
    • /
    • 2015
  • A real-time PCR assay using hybridization probe (HybProbe) has been developed to detect Brucella (B.) melitensis strains. The primer and HybProbe sets were designed based on the gap gene of chromosome I with a specific single nucleotide polymorphism of B. melitensis. Specificity of the assay was confirmed by comparison to reference Brucella species and other related strains. In the melting curve analysis, B. melitensis generated a peak at $67^{\circ}C$ unlike those for other Brucella species observed at $61^{\circ}C$. Sensitivity of the assay for B. melitensis ranged from 20 ng to 200 fg of genomic DNA. The ability to identify 94 Mongolian B. melitensis isolates using the real-time PCR assay was identical to that of classical biotyping methods and differential multiplex PCR. These data showed that this new molecular technique is a simple and quick method for detecting B. melitensis, which will be important for the control and prevention of brucellosis.

Null Allele in the D18S51 Locus Responsible for False Homozygosities and Discrepancies in Forensic STR Analysis

  • Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.17 no.2
    • /
    • pp.151-155
    • /
    • 2011
  • Short tandem repeats (STRs) loci are the genetic markers used for forensic human identity test. With multiplex polymerase chain reaction (PCR) assays, STRs are examined and measured PCR product length relative to sequenced allelic ladders. In the repeat region and the flanking region of the commonly-used STR may have DNA sequence variation. A mismatch due to sequence variation in the DNA template may cause allele drop-out (i.e., a "null" or "silent" allele) when it falls within PCR primer binding sites. The STR markers were co-amplified in a single reaction by using commercial PowerPlex$^{(R)}$ 16 system and AmpFlSTR$^{(R)}$ Identifiler$^{(R)}$ PCR amplification kits. Separation of the PCR products and fluorescence detection were performed by ABI PRISM$^{(R)}$ 3100 Genetic Analyzer with capillary electrophoresis. The GeneMapper$^{TM}$ ID software were used for size calling and analysis of STR profiles. Here, this study described a forensic human identity test in which allelic drop-out occurred in the STR system D18S51. During the course of human identity test, two samples with a homozygous (16, 16 and 21, 21) genotype at D18S51 locus were discovered using the PowerPlex$^{(R)}$ 16 system. The loss of alleles was confirmed when the samples were amplified using AmpFlSTR$^{(R)}$ Identifiler$^{(R)}$ PCR amplification kit and resulted in a heterozygous (16, 20 and 20, 21) genotype at this locus each other. This discrepancy results suggest that appropriate measures should be taken for database comparisons and that allele should be further investigated by sequence analysis and be reported to the forensic community.

Molecular Systematics of Rhizoctonia solani Isolates from Various Crops with RFLP and PCR-RFLP (각종 작물로부터 분리한 Rhizoctonia solani 균주의 RFLP 및 PCR-RFLP를 이용한 분자계통한 특성 구명)

  • 최혜선;신환성;김희종;김경수;우수진
    • Korean Journal of Microbiology
    • /
    • v.35 no.3
    • /
    • pp.173-179
    • /
    • 1999
  • As a result of PCR-RFLP, the isolates used in this study were classified into five groups. Isolates 1 and 3 were included in AG-5 with 97% genetic similarity. Isolates 12 and 13 were included in AG-1 wilh 100% genetic similarily. Isolates 10 and AG-2-2 showed 97% similarity Isolates 7, 8, 11. 13, and 15 were included in AG-1. When isolates of 4, 5, 7 and 8 were restricted with Hae I. there was a single 700 bp fragment matched with AG-1. A 517 bp restriction fragment of isolate 9 was matched with AG-2-1. Based on the result of southem hybridization of genomic DNAs, all isolates restricted with Msp I showed more variable restriction differences than those restricted with Hae Ill. Isolates AG-2-1 and 9 showed 200 bp restriction fragment, and isolates 3 and AG-1 showed 1 kb restriction fragments.

  • PDF

Diagnostic Performance for Detection of Hezicobacter Pyzori Infection in Gastric Biopsy Specimens with No Gold Test: Non-linear Regression Approach (위 조직 생검 시료의 Helicobacter pylori 균 검출에 사용되는 진단검사의 특성을 추정하기 위한 비선형 모형의 응용)

  • Pak, Son-Il;Kim, Doo
    • Journal of Veterinary Clinics
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • The selection of a test as a reference with no perfect sensitivity and specificity may lead to bias, yielding distortion of the diagnostic performance. This means it is inappropriate to use imperfect diagnostic tests as a reference method to identify infected patients in clinical environments. In this study, diagnostic performance of rapid urease test, polymerase chain reaction (PCR), and histology of gastric biopsy specimens for diagnosing Helicobacter pylori infection separately and in combination was estimated by using non-linear regression. Based on this approach, the sensitivity, specificity and likelihood ration positive and negative values for each test were as follows: urease test 99.9%, 99.9%, 99.9%, 99.6%, respectively; PCR 88.6%, 99.9%, 99.9%, 70.5%, respectively; histology 78.3%, 97%, 78.3%, 97%, respectively. Predictive values for positive and negative changes with varying Combination of three diagnostic tests employed in the study gives no substantial benefit for practitioners to screen infected patients, and urease test or PCR represents an appropriate single test in clinical environments.

Molecular Sexing and Species Identification of the Processed Meat and Sausages of Horse, Cattle and Pig

  • Kim, Yoo-Kyung;Kang, Yong-Jun;Kang, Geun-Ho;Seong, Pil-Nam;Kim, Jin-Hyoung;Park, Beom-Young;Cho, Sang-Rae;Jeong, Dong Kee;Oh, Hong-Shik;Cho, In-Cheol;Han, Sang-Hyun
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.61-64
    • /
    • 2016
  • We developed a polymerase chain reaction (PCR)-based molecular method for sexing and identification using sexual dimorphism between the Zinc Finger-X and -Y (ZFX-ZFY) gene and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for mitochondrial DNA (mtDNA) cytochrome B (CYTB) gene in meat pieces and commercial sausages from animals of different origins. Sexual dimorphism based on the presence or absence of SINE-like sequence between ZFX and ZFY genes showed distinguishable band patterns between male and female DNA samples and were easily detected by PCR analyses. Male DNA had two PCR products appearing as distinct two bands (ZFX and ZFY), and female DNA had a single band (ZFX). Molecular identification was carried out using PCR-RFLP of CYTB gene, and showed clear species classification results. The results yielded identical information on the sexes and the species of the meat samples collected from providers without any records. The analyses for DNA isolated from commercial sausage showed that pig was the major source but several sausages originated from chicken and Atlantic cod. Applying this PCR-based molecular method was useful and yielded clear sex information and identified the species of various tissue samples originating from livestock.

Individual Identification using The Multiplex PCR with Microsatellite Markers in Swine

  • Kim, Lee-Kung;Park, Chang-Min;Park, Sun-Ae;Kim, Seung-Chang;Chung, Hoyoung;Chai, Han-Ha;Jeong, Gyeong-Yong;Choi, Bong-Hwan
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.205-211
    • /
    • 2013
  • The swine is one of the most widespread mammalian throughout the whole world. Presently, many studies concerning microsatellites in swine, especially domestic pigs, have been carried out in order to investigate general diversity patterns among either populations or breeds. Until now, a lot of time and effort spend into a single PCR method. But simple and more rapid multiplex PCR methods have been developed. The purpose of this study is to develop a robust set of microsatellites markers (MS marker) for traceability and individual identification. Using multiplex-PCR method with 23 MS marker divided 2 set, various alleles occurring to 5 swine breed (Berkshire, Landrace, Yorkshire, Duroc and Korea native pig) used markers to determine allele frequency and heterozygosity. MS marker found 4 alleles at SW403, S0227, SWR414, SW1041 and SW1377. The most were found 10 alleles at SW1920. Heterozygosity represented the lowest value of 0.102 at SWR414 and highest value of 0.861 at SW1920. So, it was recognized appropriate allele frequency for individual identification in swine. Using multiplex-PCR method, MS markers used to determine individual identification biomarker and breed-specific marker for faster, more accurate and lower analysis cost. Based on this result, a scientific basis was established to the existing pedigree data by applying genetics additionally. Swine traceability is expected to be very useful system and be conducted nationwide in future.

Implementation of a Deep Learning-Based Computer-Aided Detection System for the Interpretation of Chest Radiographs in Patients Suspected for COVID-19

  • Eui Jin Hwang;Hyungjin Kim;Soon Ho Yoon;Jin Mo Goo;Chang Min Park
    • Korean Journal of Radiology
    • /
    • v.21 no.10
    • /
    • pp.1150-1160
    • /
    • 2020
  • Objective: To describe the experience of implementing a deep learning-based computer-aided detection (CAD) system for the interpretation of chest X-ray radiographs (CXR) of suspected coronavirus disease (COVID-19) patients and investigate the diagnostic performance of CXR interpretation with CAD assistance. Materials and Methods: In this single-center retrospective study, initial CXR of patients with suspected or confirmed COVID-19 were investigated. A commercialized deep learning-based CAD system that can identify various abnormalities on CXR was implemented for the interpretation of CXR in daily practice. The diagnostic performance of radiologists with CAD assistance were evaluated based on two different reference standards: 1) real-time reverse transcriptase-polymerase chain reaction (rRT-PCR) results for COVID-19 and 2) pulmonary abnormality suggesting pneumonia on chest CT. The turnaround times (TATs) of radiology reports for CXR and rRT-PCR results were also evaluated. Results: Among 332 patients (male:female, 173:159; mean age, 57 years) with available rRT-PCR results, 16 patients (4.8%) were diagnosed with COVID-19. Using CXR, radiologists with CAD assistance identified rRT-PCR positive COVID-19 patients with sensitivity and specificity of 68.8% and 66.7%, respectively. Among 119 patients (male:female, 75:44; mean age, 69 years) with available chest CTs, radiologists assisted by CAD reported pneumonia on CXR with a sensitivity of 81.5% and a specificity of 72.3%. The TATs of CXR reports were significantly shorter than those of rRT-PCR results (median 51 vs. 507 minutes; p < 0.001). Conclusion: Radiologists with CAD assistance could identify patients with rRT-PCR-positive COVID-19 or pneumonia on CXR with a reasonably acceptable performance. In patients suspected with COVID-19, CXR had much faster TATs than rRT-PCRs.

Rapid and Specific Identification of Genus Cynoglossus by Multiplex PCR Assays Using Species-specific Derived from the COI Region (다중 PCR 분석법을 이용한 참서대과 어종의 신속하고 정확한 종판별 분석법 개발)

  • Noh, Eun Soo;Kang, Hyun Sook;An, Cheul Min;Park, Jung Youn;Kim, Eun Mi;Kang, Jung Ha
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1007-1014
    • /
    • 2016
  • A highly efficient, rapid, and reliable multiplex polymerase chain reaction based method for distinguishing ten species of genus Cynoglossus (C. senegalensis, C. abbreviates, C. macrolepidotus, C. arel, C. semilaevis, C. interruptus, C. joyneri, C. lingua, C. robustus, and C. monodi) is described. The species-specific primer sets were designed base on the cytochrome oxidase subunit I gene (1,500 bp). The optimal PCR conditions and primers were selected for ten of Cynoglossus species to determine target base sequences using single PCR. Multiplex PCR using the ten pairs of primers either specifically amplified a DNA fragment of a unique size or failed, depending on each species DNA. The length of amplification fragment of 208 bp for C. senegalensis, 322 bp for C. abbreviates, 493 bp for C. macrolepidotus, 754 bp for C. arel, 874 bp for C. semilaevis, 952 bp for C. interruptus, 1,084 bp for C. joyneri, 1,198 bp for C. lingua, 1,307 bp for C. robustus, and 1,483 bp for C. monodi with the species-specific primers, visualized by agarose gel electrophoresis, allowed perfectly distinction of the Cynoglossus species. The multiplex PCR assay can be easily performed on multiple samples and attain final results in less than 6 hours. This technique should be a useful addition to the molecular typing tools for the tentative identification of Cynoglossus species.