• Title/Summary/Keyword: Single PCR

Search Result 1,032, Processing Time 0.027 seconds

Genetic information analysis for the development of an event-specific PCR marker for herbicide tolerance LM crops

  • Do Yu, Kang;Myung Ho, Lim;Soo In, Sohn;Hyun Jung, Kang;Tae Sung, Park
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.1051-1065
    • /
    • 2021
  • Recent times have seen sustained increases in genetically modified (GM) crops not only for cultivation but also for the utility of food and feed worldwide. Domestically, commercial planting and the accidental or unintentional release of living modified (LM) crops into the environment are not approved. Many detection methods had been devised in an effort to realize effective management of the safety of agricultural genetic resources. In order to develop event-specific polymerase chain reaction (PCR) markers for LM crops, we analyzed the genetic information of LM crops. Genetic components introduced into crops are of key importance to provide a basis for the development of detection methods for LM crops. To this end, a total of 18 varieties from four major LM crop species (maize, canola, cotton, and soybeans) were subjected to an analysis. The genetic components included introduced genes, promoters, terminators and selection markers. Thus, if proper monitoring techniques and single or multiplex PCR strategies that rely on selection markers can be established, such an accomplishment can be regarded as a feasible solution for the safe management of staple crop resources.

Genetic Characterization of Potato Blackleg Strains from Jeju Island (제주지역에서 분리한 감자 줄기검은병균의 유전적 특성)

  • Seo Sang-Tae;Lee Seungdon;Lee Jung-Sup;Han Kyoung-Suk;Jang Han-Ik;Lim Chun-Keun
    • Research in Plant Disease
    • /
    • v.11 no.2
    • /
    • pp.140-145
    • /
    • 2005
  • A collection of 12 Erwinia carotovora strains from blackleg diseased potato in Jeju island was characterized genetic diversity by 5. cayotovora subsp. atposeptica (Eca)-specific PCR, PCR-RFLP of the two genes (16S rRNA and pel) and repetitive sequence PCR (ERIC-PCR). The results were compared with those of the other E. carotovora representative strains. None of the blackleg strains produced PCR amplicons with Eca-specific primers in contrast to the single 690 bp amplicon obtained with Eca strains. In addition, on the basis of pel gene RFLP with Sau3AI, the blackleg strains belonged to the pattern 2 whereas Eca strains belonged to the other one (pattern 3). By analysis of 16S rDNA RELP generated with HinfI, the most strains including the E. carotovera subsp. carotovora (Ecc) representative strains used in this study belonged to the pattern 1 whereas the blackleg strains belonged to the pattern 2 except for one strain. Moreover, ERIC-PCR analysis showed that the blackleg strains were closely related to each other and had an unique DNA band. Based on these molecular approaches, we have confirmed that the blackleg disease of potato is caused by a different E. carotovora from Eca and Ecc in Jeju island.

Development of a Species Identification Method for the Egg and Fry of the Three Korean Bitterling Fishes (Pisces: Acheilognathinae) using RFLP (Restriction Fragment Length Polymorphism) Markers (제한절편 길이 다형성(RFLP) 분자마커를 이용한 납자루아과 담수어류 3종의 난과 치어 종 동정 기법 개발)

  • Choi, Hee-kyu;Lee, Hyuk Je
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.3
    • /
    • pp.352-358
    • /
    • 2018
  • This study aimed to develop a species identification method for the egg and fry of the three Korean bitterling fishes (Pisces: Acheilognathinae), including Acheilognathus signifer, Acheilognathus yamatsutae and Rhodeus uyekii based on the PCR-based Restriction Fragment Length Polymorphism (RFLP) markers. We conducted a field survey on the Deokchicheon River from the North Han River basin, where the three Acheilognathinae species co-occur, and also analyzed the existing sequence dataset available from the GenBank. We found coexistence of the three species at the study site. The egg and fry were obtained from the host mussels (Unio douglasiae sinuolatus) by hand from May to June 2015 and in May 2017. To develop PCR-based RFLP markers for species identification of the three Acheilognathinae fish species, restriction enzymes pinpointing species-specific single nucleotide variation (SNV) sites in mitochondrial DNA COI (cytochrome oxidase I) and cyt b (cytochrome b) genes were determined. Genomic DNA was extracted from the egg and fry and RFLP experiments were carried out using restriction enzymes Apal I, Stu I and EcoR V for A. signifer, A. yamatsutae and R. uyekii, respectively. Consequently, unambiguous discrimination of the three species was possible, as could be seen in DNA band patterns from gel electrophoresis. Our developed PCR-based RFLP markers will be useful for the determination of the three species for the young and would assist in studying the spawning patterns and reproductive ecology of Acheilognathinae fishes. Furthermore, we believe the obtained information will be of importance for future maintenance, management and conservation of these natural and endangered species.

Detection of p53 Mutation in Colorectal Cancer Using PCR-SSCP and DHPLC (대장암에서 PCR-SSCP와 DHPLC를 이용한 p53 돌연변이의 검출)

  • Sang-Bum Park;Sang-Man Han;Youn-Hyoung Nam;Won-Cheoul Jang
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.5
    • /
    • pp.460-465
    • /
    • 2003
  • Structural alteration of p53 and overexpression of p53 protein are the most common genetic abnormalities in various kinds of human cancer. Mutations in the p53 tumor-suppressor gene are usually associated with an advanced development of colorectal cancer characterized by the transition from the adenoma to carcinoma stage. Mutations in exons 5-8 of the p53 gene were analyzed by the polymerase chain reaction-single strand conformation polymorphism(PCR-SSCP) and denaturing high performance liquid chromatography(DHPLC). SSCP analysis detected 7 mutations(C13109>T) in 50 colorectal cancer samples(14%) at exon 5, and DHPLC analysis detected 7 mutations (C13109>T) and 2 mutation(C13202>A, C13204>G) in 50 colorectal cancer samples(18%) at exon 5. All of 9 mutations were proved by sequencing analysis. We conclude that DHPLC is a highly sensitive and specific method for p53 gene mutations.

Genetic Diversity Analysis of the Cheju Horse Using Random Amplified Polymorphic DNAs (PCR-RAPD를 이용한 제주말의 유전적 다양성분석)

  • Cho, Byung-Wook;Lee, Kil-Wang
    • Journal of Life Science
    • /
    • v.14 no.3
    • /
    • pp.521-524
    • /
    • 2004
  • This experiment was carried out to analyze genetic characteristics and to develop the breed specific DNA marker for Cheju-native horse. If this marker contains high repetitive sequences, it is possible to convert a RAPD marker of interest into a single-locus PCR marker called a sequence characterized amplified region(SCAR). Twenty six Cheju-native horse and Fifty thoroughbred genomic DNA were pooled and PCR. were accomplished using 800 random primers. Comparing the pooled DNA from Cheju-native horse and thoroughbred, we found 9 primers which identified markers present in the pooled DNA from breed but absent in the other breed. Among 9 random primers, 6 primers were thoroughbred specific and 3 primers were Cheju-native horse specific. Testing individual horse revealed that 5 marker showed the similar band pattern between Cheju-native horse and Thoroughbred. However, 4 marker were wholly absent in breed while present in the other breed. UBC $126_{3500bp}$, UBC $162_{500bp}$, and UBC $244_{1200bp}$ was detected only Thoroughbred and UBC $562_{560bp}$was detected Cheju-native horse, respectively. After determining of the cloned breed-specific fragment sequence, we designed the SCAR-primers and carried out PCR. Compared to random primer, RAPD-SCAR primer didn't show significantly higher specific band. However, RAPD analysis is useful for genetic characterization of Cheju-native horse.

PCR-based identification of uncultural bacterium from malformed Agaricus blazei (신령버섯의 기형으로부터 배양불능세균의 PCR 검정)

  • Shin, Pyung-Gyun;Park, Yun-Jung;Yoo, Young-Bok;Kong, Won-Sik;Jang, Kab-Yeul;Oh, Se-Jong;Lee, Keum-Hee
    • Journal of Mushroom
    • /
    • v.8 no.4
    • /
    • pp.157-160
    • /
    • 2010
  • Agaricus blazei Murill is a important medicinal mushroom for a powerful immune system builder and tonic. Currently, it is known about a new disease phenomenon that appears to be occurring on a number of mushroom farms. We described a straightforward approach in which molecular methods was used to survey the presence of potentially endo- and epiphytic bacteria infected with the Agaricus blazei. The 16S rDNA was amplified with universal eubacterial primers directly from pure cultures of Agaricus blazei mycelium and fruit body. The 16S rDNA sequences were almost identical (96 to 97% similarity), and phylogenetic analysis placed them in a single unique rRNA branch belong to the uncultural bacterium phylogroup. PCR detection of uncultural bacterium in the malformed tissues of Agaricus blazei were carried out by using 16S rRNA sequenced specific probe. It was strongly amplified at the malformed pileus region of fruit body and also spore print was impossible.

  • PDF

Molecular Differentiation of Schistosoma japonicum and Schistosoma mekongi by Real-Time PCR with High Resolution Melting Analysis

  • Kongklieng, Amornmas;Kaewkong, Worasak;Intapan, Pewpan M.;Sanpool, Oranuch;Janwan, Penchom;Thanchomnang, Tongjit;Lulitanond, Viraphong;Sri-Aroon, Pusadee;Limpanont, Yanin;Maleewong, Wanchai
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.6
    • /
    • pp.651-656
    • /
    • 2013
  • Human schistosomiasis caused by Schistosoma japonicum and Schistosoma mekongi is a chronic and debilitating helminthic disease still prevalent in several countries of Asia. Due to morphological similarities of cercariae and eggs of these 2 species, microscopic differentiation is difficult. High resolution melting (HRM) real-time PCR is developed as an alternative tool for the detection and differentiation of these 2 species. A primer pair was designed for targeting the 18S ribosomal RNA gene to generate PCR products of 156 base pairs for both species. The melting points of S. japonicum and S. mekongi PCR products were $84.5{\pm}0.07^{\circ}C$ and $85.7{\pm}0.07^{\circ}C$, respectively. The method permits amplification from a single cercaria or an egg. The HRM real-time PCR is a rapid and simple tool for differentiation of S. japonicum and S. mekongi in the intermediate and final hosts.

Cloning and Expression of a Novel Chitosanase Gene (choK) from $\beta$-Proteobacterium KNU3 by Double Inverse PCR

  • Yi, Jae-Hyoung;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.563-569
    • /
    • 2004
  • The DNA sequence of the chitosanase gene (choK) from $\beta$-Proteobacterium KNU3 showed an 1,158-bp open reading frame that encodes a protein of 386 amino acids with a novel 74 signal peptide. The degenerated primers based on the partial deduced amino acid sequences from MALDI- TOF MS analyses yielded the 820 bp of the PCR product. Based on this information, double inverse PCR cloning experiments, which use the two specific sets of PCR primers rather than single set primers, identified the unknown 1.2 kb of the choK gene. Subsequently, a 1.8 kb of full choK gene was cloned from another PCR cloning experiment and it was then subcloned into pGEM T-easy and pUC18 vectors. The recombinant E. coli clone harboring recombinant pUC18 vector produced a clear halo around the colony in the glycol chitosan plates. The recombinant ChoK protein was secreted into medium in a mature form while the intracellular ChoK was produced without signal peptide cleavage. The activity staining of PAGE showed that the recombinant ChoK protein was identical to the chitosanase of wild-type. The comparison of deduced amino acid sequences of choK revealed that there is 92% identity with that of Sphingobacterium multivorum chitosanase. Judging from the conserved module in other bacterial chitosanases, chitosanase of KNU3 strain (ChoK) belongs to the family 80 of glycoside hydrolases.

Reevaluation of the Change of Leuconostoc Species and Lactobacillus plantarum by PCR During Kimchi Fermentation

  • Choi, Jae-Yeon;Kim, Min-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.166-171
    • /
    • 2002
  • The genus Leuconostoc is generally recognized as a favorable microorganism associated with a good taste of Kimchi and Lactobacillus plantarum is responsible for the overripening and acidification of Kimchi. A rapid and reliable PCR-based method to monitor the change of these lactic acid bacterial populations during Kimchi fermentation was attempted. A Leuconostoc-specific primer set was chosen from the conserved sequences of 16S rRNA genes among Leuconostoc species. The Lb. plantarum-specific primer set was the internal segments of a Lb. plantarum-specific probe which was isolated after randomly amplified polymorphic DNA (RAPD) analysis and tested for identification. The specificity of this protocol was examined in DNA samples isolated from a single strain. In agarose gel, as little as 10 pg of template DNA could be used to visualize the PCR products, and quantitative determination was possible at the levels of 10 pg to 100 ng template DNA. For the semi-quantitative determination of microbial changes during Kimchi fermentation, total DNAs from the 2 h-cultured microflora of Kimchi were extracted for 16 days and equal amounts of DNA templates were used for PCR. The intensities of DNA bands obtained from PCR using Leuconostoc-specific and Lb. plantarum-specific primer sets marked a dramatic contrast at the 1 ng and 100 ng template DNA levels during Kimchi fermentation, respectively. As the fermentation proceeded, the intensity of the band for Leuconostoc species increased sharply until the 5th day and the levels was maintained until the 11 th day. The sharp increase for Lb. plantarum occurred after 11 days with the decrease of Leuconostoc species. The results of this study indicate that Leuconostoc species were the major microorganisms at the beginning of Kimchi fermentation and reach their highest population during the optimum ripening period of Kimchi.

The Development of Molecular Detection Method and Differentiation of Genotypes of Enterovirus (Enterovirus에 대한 분자생물학적 검증법 및 Genotypes 방법의 개발)

  • Kim, Eun-Soon;Nam, Jung-Hyun;Kim, Ki-Soon;Yoon, Jae-Deuk;Kim, Yoo-Kyum
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.2
    • /
    • pp.169-176
    • /
    • 1997
  • In this study, the feasibility of identification and genotypic differentiation of enteroviruses was investigated by using nested reverse transcription-polymerase chain reaction (nested RT-PCR), single-stranded conformation polymorphism (SSCP), and restriction fragment length polymorphism (RFLP) techniques. Two hundred seventy-four clinical samples were assayed by both nested RT-PCR and tube culture method using MRC-5 and MK cells; 58 (86.6%) out of 67 enterovirus culture-positive samples contained enteroviral RNA. In addition, 114 (55.1%) of 207 samples from patients with suspected enteroviral CNS disease with negative viral cultures were positive by the nested RT-PCR. The nested RT-PCR products were genotyped by the SSCP method and the results were compared with serotypes. We could differentiate 6 subtypes, 3 of which are similar to coxsackievirus B3, B5, echovirus 11, plus 3 other subtypes. RFLP cleaved with Sty I, Bgl I, and Xmn I yielded characteristic patterns for each laboratory strains. This study demonstrates the usefulness of the RT-PCR for the rapid diagnosis of enterovirus infection and the potentials of the SSCP method for differentiation of enterovirus strains.

  • PDF