• Title/Summary/Keyword: Single Lap Shear Specimen

Search Result 14, Processing Time 0.023 seconds

Study on Bearing Response of Single Lap Riveted Joint (Single Lap Riveted Joint의 베어링 거동 연구)

  • Heo Kwang-Su;Yoon Sung-Ho;Jeong Jong-Cheol;Lee Sang-Jin;Kim Jung-Seok
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.326-331
    • /
    • 2005
  • In this study, bearing response in single lap riveted joint is investigated by menas of single lap shear specimens with different types of adherend and fastener. Single lap shear specimen consists of adherend of SUS403 and carbon fabric/epoxy composite. Rivet of Avdel 2691 with 9.6mm diameter is used. Two types of fastener in single lap riveted joint are considered. One is a single lap shear specimen with single fastener, and the other is a single lap shear specimen with double fasteners. Especially, in case of single lap shear specimen with single fastener, the width of the specimen is varied as 2D, 3D, 4D, 6D at a fixed edge distance of 3D. Also the edge distance of the specimen is varied as 1.0D, 1.5D, 2.0D, 2.5D, 3.0D at a fixed width of 4D. In case of single lap shear specimen with double fasteners, two types of specimen are considered. One is a specimen with the width of 6D and edge distance of 3D. The other is a specimen with the width of 4D and edge distance of 2D. Here D designates the hole diameter for riveted joint.

  • PDF

The Evaluation of Tensile-shear Strength on the Al-Alloy Single-lap Adhesive Joints (AI합금 단순겹치기 접착이음의 인장-전단강도 평가)

  • Oh, S. K.;Yu, Y. C.;Jeong, E. S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.567-571
    • /
    • 1997
  • Recently, automobile industry has led to increasing use of aluminum alloy for weight reduction. Automobile made of aluminum alloy can be given lighter, stronger and a harder surface by anodizing than one made of steel-alloy. In this paper, we investigate the influence of lap length, adherend thickness and adhesive thickness on adhesive strength of single-lap adhesive joints by conducting tensile-shear tests. Single-lap adhesive joints of aluminum was calculated using joint factor by using adhesive length, adherend thickness of specimen.

  • PDF

Application of Single Lap-Shear Test for Extracting Adhesive Bonding Strength of Coating Layer on Galvannealed sheet (합금화용융아연코팅강판의 코팅층 접합강도 평가를 위한 단일 겹치기이음 시험의 적용)

  • Lee, Jung-Min;Lee, Cha-Joo;Lee, Sang-Gon;Ko, Dae-Cheol;Kim, Byung-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.238-243
    • /
    • 2007
  • This paper is designed to estimate the adhesion strength of coating layer on galvannealed steel sheet using lap shear test. The single lap shear test is the most commonly used standard test for determining the strength of medium-strength and high strength bonds. The bond strength of bonded single lap joints on subjecting the substrates to loads is determined by lap shear forces in the direction of the bonded joint. In this study, specimen for adhesion strength test was made to attach coated sheet to cold rolled sheet and were heated in temperature of 180 for 20minutes. After test, detached parts of coatings on coated sheet were observed using SEM and EDX to identify substrate and complete detachment. The tested results showed that adhesive strength of coating is unrelated to anisotropy of sheet and is difficult to be extracted using conventional theory because of fine cracks of coating layers which were created during annealing process.

  • PDF

A study on adhesion properties between composite material and aluminum according to the physical surface treatment technique (물리적 표면처리 기법에 따른 복합소재 및 알루미늄간 접합특성 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.334-339
    • /
    • 2020
  • In this study, the adhesion properties between aluminum and composite materials, composite materials, and composite materials were compared according to the physical surface treatment to improve mechanical bonding at the bonding surface when considering carbon fiber and glass fiber-reinforced composite materials. Bonded specimens were classified into the type of base material and the surface treatment method of the bonding surface. Sandpaper, sandblasting, and plasma were applied as physical surface treatment methods. The bonded specimen was prepared as a single lap joint test specimen. An experiment to measure the lap shear strength was conducted, and the results were compared. The experimental results confirmed that the mechanical abrasion and sandblasting treatment improved the lap shear strength approximately 4 to 5 fold compared to the general specimen without physical surface treatment. In plasma treatment, the experiment was conducted by defining the respective plasma output and treatment time as follows: 150 W and 5 minutes, 150 W and 10 minutes, and 300 W and 3 minutes. Moreover, the lap shear strength results were similar to the previous mechanical surface treatments. On the other hand, the effect on the adhesion properties was small, depending on the plasma treatment conditions.

Shear Strength of an Aluminum Alloy Bonded with a DP-460 Adhesive: Single Lap-shear Joints

  • Kim, Hyun-Bum;Nishida, Tomohisa;Oguma, Hiroyuki;Naito, Kimiyoshi
    • Journal of Adhesion and Interface
    • /
    • v.21 no.1
    • /
    • pp.20-26
    • /
    • 2020
  • Single lap-shear joints (SLJ) specimens with and without partial round fillets were fabricated to measure the average shear strength of adhesives. The effects of the length of the adherend on the SLJ specimens were also investigated. An epoxy adhesive was used to bond aluminum alloy. Tensile tests were performed on the adhesive bulk specimens to measure the mechanical properties. The finite element analysis (FEA) method was used to measure the adhesive stress distributions, i.e., the peel and shear stresses, on the bonded part. The experimental results revealed that the specimen consisting short length of adherend and without the partial round fillets exhibited the smallest average shear strength of adhesive among the investigated specimens. FEA revealed that the low average shear strength for the specimen with a short adherend length was caused by high stress concentrations on the adhesive at the edge of the bonded part.

Strength Evaluation of Adhesive Bonded Joint for Car Body (차체접합과 관련한 접합 강도 평가)

  • 이강용;김종성;공병석;우형표
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.143-150
    • /
    • 1998
  • The evaluation of joint fatigue strength of light weight materials for electrical vehicle body has been performed through single lap joint tests with the design parameters such as joint style, adherend, bonding overlap length and bonding thickness. Fatigue strength was evaluated through 5-Hz, tension-tension, load controlled test with the stress ratio zero value. It is experimentally observed that fatigue strength of joint increases for the increase of overlap length. The combinations of Al-Al and Al-FRP adherends show that fatigue strength of joint is hardly changed for the increase of bonding thickness, but FRP-FRP adherend specimen shows that fatigue strength of joint increases after decreases for the increase of bonding thickness. Al-Al adherend specimen has much higher fatigue length than Al-FRP and FRP-FRP adherend specimens. Riveting at adgesive bonded joint gives little effect on fatigue strength.

Strain Sensing of Single Lap Shear using Pencil Lead Drawn Paper Sensor (PLDPS) (연필심을 이용한 종이센서에 의한 단일 랩 전단변형률 감지능)

  • Yoo, Ji-Hoon;Shin, Pyeong-Su;Kim, Jong-Hyun;Lee, Sang-Il;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.228-233
    • /
    • 2020
  • In this paper, a single lap shear test was performed using a glass fiber reinforced composite material (GFRC). Pencil lead drawn paper sensor (PLDPS) was applied for single lap shear test being performed. Bisphenol-A epoxy and amine hardener were used as adhesives combining with composite materials. To make a difference in adhesive properties, the adhesive was cured under different conditions. PLDPS was made of a 4B pencil on A4 paper. Because graphite in a pencil was an electrically conductive substance, electric resistance (ER) could be measured. A change in ER was observed by a position where a PLDPS was attached to single lap shear specimens. It was confirmed that the change in ER was different depending on two attached positions and was observed by lap shear strain as well. In case the lap shear strain was large, the change in ER of PLDPS was high. This was because the larger the extension of the adhesive part, the larger the degree of bending of the specimen and thus the larger the distance change between two electrodes.

Static Strength of Composite Single-Lap Shear Joint Specimen Using Z-pinning Patch (Z-피닝 패치를 사용한 복합재 단일-겹침 전단 접합 시편의 정적강도)

  • Choi, Ik-Hyeon;Lim, Cheol-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.613-618
    • /
    • 2013
  • In this paper a new concept on z-pinning technology named by authors as 'z-pinning patch' will be introduced, which advantage is easy application at manufacturing site of composite structures. Using the trial manufactured z-pinning patch, the z-pinned composite single-lap shear joint specimens were successfully manufactured and tested to check the improvement of joint strengths. The z-pin's material is stainless steel and its surface was machined as zagged shape and chemically corroded to improve joint force with composite materials.

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

A Study on the Curing Method to Improve Bonding Strength of Aluminum/CFRP Composites (알루미늄/CFRP 복합재의 접착강도 향상을 위한 경화방법에 관한 연구)

  • 이경엽;양준호;최낙삼
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.130-135
    • /
    • 2002
  • This study investigates the effect of curing method on the bonding strength of aluminum/CFRP composites. The surface of aluminum panel was treated by DC plasma. Lap shear tests and T-peel tests were performed based on the procedure of ASTM 906-94a and ASTMD1876-95, respectively. Test samples were fabricated by using the co-curing method and the secondary curing method. The results showed that the shear strength of test samples made by the co-curing method was 2.5 times greater than that of test samples made by the secondary curing method. The T-peel strength of the co-curing method case was almost 2 times greater than that of the secondary curing method case.