• Title/Summary/Keyword: Single Junction

Search Result 309, Processing Time 0.026 seconds

A Design and Fabrication of a High Power SSPA for C-Band Satellite Communication (C-Band 위성통신용 고출력 증폭기의 설계 및 제작)

  • 예성혁;윤순경;전형준;나극환
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06a
    • /
    • pp.27-31
    • /
    • 1996
  • In this paper, The SSPA(Solid State Power Amplifier) is 100 watts amplifier which is used with C-Band Satellite communication Up-Link frequency, 5.875 ∼6.425 GHz. SSPA requires more output power than is available from a single GaAs FET with result it is necessary to combine the output of many device. To achieve a high power, it is important to make a good N-way power divider which has a small different phase, good combining efficiency and high power handling capability. The reliability of Power GaAs FET decrease with increasing junction temperature, power amplifier in general dissipate amount of power. It is important to provide them with a heatsink and a temperature compensation circuit to dispose of the unwanted heat. To compensate temperature, Using PIN diode attenuator, it is enable to get a precision gain control. The output power of the SSPA is more than 100 watt with which the TWTA (Traveling-Wave Tube Amplifier) can be replaced. Each stage was measured by the Network analyzer PH8510C, Power meter Booton 42BD, The gain is more than 53 dB, flatness is less than 1.5 dB.

  • PDF

Fabrication of an Optical Hydrogen Sensor Based on 3C-SiC Photovoltaic Effect and Its Characteristics (3C-SiC 광기전 특성 기반 광학식 수소센서의 제작과 그 특성)

  • Kim, Kang-San;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.283-286
    • /
    • 2012
  • This paper presents the optical hydrogen sensor based on transparent 3C-SiC membrane and photovoltaic effect. Gasochromic materials of Pd and Pd/$WO_3$ were deposited by sputter on 3C-SiC membrane for gas sensing area. Gasochromic materials change to transparency by exposure to hydrogen. The variations of light intensity by hydrogen generate the photovoltaic of P-N junction between N-type 3C-SiC and P-type Si. Single layer of Pd shows higher photovoltaic compared with Pd/$WO_3$. However, phase transition from ${\alpha}$ to ${\beta}$ is shown at 6 %. Pd/$WO_3$ structure show the more linear response to hydrogen range of 2 % ~10 %. Also, almost 2 times fast response and recovery characteristics are shown at Pd/$WO_3$. These fast performances are come from the fact that Pd promoted the chemical reaction between hydrogen and $WO_3$.

A technical study on mold construction development for junction improvement and productivity improvement of Double-Injection molding (이중사출의 접합성 개선 및 생산성향상을 위한 금형구조 개발기술연구)

  • Kim, O.R.;Lee, S.Y.;Kim, Y.K.;Woo, C.K.;Han, I.Y.
    • Design & Manufacturing
    • /
    • v.2 no.6
    • /
    • pp.49-55
    • /
    • 2008
  • Double-injection molding can inject two different materials or two colors in the same mold and process. If this injection process use, product has ability because the base part maintain strength and specified part can inject soft-material. It makes the cost down by single operation automatically for saving wages. In this paper, we designed double-injection mold for automobile remote control to inject secondary using this part as insert after inject external appearance of product. CAE analysis was progressed gate location and runner size as variable and analysis result is reflected in mold design process. As a result, it could solved badness that is generated at the conventional mold. Additionally, cost is downed by reducing loss of runner as well as could omit painting process because surface of finished product is improved through new mold.

  • PDF

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.

Quantification of Genetically Modified Canola GT73 Using TaqMan Real-Time PCR

  • Kim, Jae-Hwan;Song, Hee-Sung;Kim, Dong-Hern;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1778-1783
    • /
    • 2006
  • Event-specific PCR detection methods are the primary trend in genetically modified (GM) plant detection owing to their high specificity based on the flanking sequence of the exogenous integrant. Therefore, this study describes a real-time PCR system for event-specific GM canola GT73, consisting of a set of primers, TaqMan probe, and single target standard plasmid. For the specific detection of GT73 canola, the 3'-integration junction sequence between the host plant DNA and the integrated specific border was targeted. To validate the proposed method, test samples of 0, 1, 3, 5, and 10% GT73 canola were quantified. The method was also assayed with 15 different plants, and no amplification signal was observed in a real-time PCR assay with any of the species tested, other than GT73 canola.

The Design of BCM based Power Factor Correction Control IC for LED Applications (LED 응용을 위한 BCM 방식의 Power Factor Correction Control IC 설계)

  • Kim, Ji-Man;Jung, Jin-Woo;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2707-2712
    • /
    • 2011
  • In this paper, a power factor correction (PFC) control circuit using single stage boundary conduction mode(BCM) for the 400V. 120W LED drive application has been designed. The proposed control circuit is aimed for improvement of the power factor correction and reduction of the total harmonic distortion. In this circuit, a new CMOS multiplier structure is used instead of a conventional BJT(bipolar junction transistor) based multiplier where has a relatively large area. The CMOS multiplier can bring 30 % reduced chip area, competitive die cost in comparison with the conventional BJT multiplier.

Cohesion Establishment Factors Stimulate Endonuclease Activity of hFen1 Independently and Cooperatively

  • Kim, Do-Hyung;Kim, Jeong-Hoon;Park, Byoung Chul;Cho, Sayeon;Park, Sung Goo
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.10
    • /
    • pp.1768-1771
    • /
    • 2015
  • Human Fen1 protein (hFen1) plays an important role in Okazaki fragment processing by cleaving the flap structure at the junction between single-stranded (ss) DNA and doublestranded (ds) DNA, an intermediate formed during Okazaki fragment processing, resulting in ligatable nicked dsDNA. It was reported that hChlR1, a member of the cohesion establishment factor family, stimulates hFen1 nuclease activity regardless of its ATPase activity. In this study, we found that cohesion establishment factors cooperatively stimulate endonuclease activity of hFen1 in in vivo mimic condition, including replication protein-A-coated DNA and high salt. Our findings are helpful to explain how a DNA replication machinery larger than the cohesion complex goes through the cohesin ring structure on DNA during S phase in the cell cycle.

A Trial of 6 MV Linear Accelerator Radiation Therapy (RT) for Breast Cancer (6 MV 선형가속기를 사용한 유방암 치료)

  • Lee Guy Won;Park Ju Seon;Kim Geol;Yoon Sei Chul
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.1 no.1
    • /
    • pp.37-42
    • /
    • 1985
  • Radiation Therapy(RT) has been used in the treatment of breast cancer for over 80 years. Technically, it should include a part or all of such areas as chest wall or breast, axilla, internal mammary nodes(IM) and supraclavicular nodes (SCL). Authors tried three-field technique for the treatment of breast cancer using 6 MV linear accelerator, exclusively the department of Radiology, Kang-Nam St. Mary's Hospital, at Catholic Medical College. The field junction was checked by a phantom study and radiation doses measured by film densitometry and TLD. The 3 fields we used in this study were two isocentric opposing tangential fields encompassing the breast, chest wall and occasionally IM and one single anterior field encompassing the axilla and SCL. Using appropriate beam blocks and blouses, we were able to avoid unwanted intrinsic divergency of photon beam. Blocking also enabled us to set-up precise radiation field with ease.

  • PDF

Ge thin layer transfer on Si substrate for the photovoltaic applications (Si 기판에서의 광소자 응용을 위한 Ge 박막의 Transfer 기술개발)

  • 안창근;조원주;임기주;오지훈;양종헌;백인복;이성재
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.743-746
    • /
    • 2003
  • We have successfully used hydrophobic direct-wafer bonding, along with H-induced layer splitting of Ge, to transfer 700nm think, single-crystal Ge films to Si substrates. Optical and electrical properties have been also observed on these samples. Triple-junction solar cell structures gown on these Ge/Si heterostructure templates show comparable photoluminescence intensity and minority carrier lifetime to a control structure grown on bulk Ge. When heavily doped p$^{+}$Ge/p$^{+}$Si wafer bonded heterostructures were bonded, ohmic interfacial properties with less than 0.3Ω$\textrm{cm}^2$ specific resistance were observed indicating low loss thermal emission and tunneling processes over and through the potential barrier. Current-voltage (I-V) characteristics in p$^{+}$Ge/pSi structures show rectifying properties for room temperature bonded structures. After annealing at 40$0^{\circ}C$, the potential barrier was reduced and the barrier height no longer blocks current flow under bias. From these observations, interfacial atomic bonding structures of hydrophobically wafer bonded Ge/Si heterostructures are suggested.ested.

  • PDF

Study of a Betavoltaic Battery Using Electroplated Nickel-63 on Nickel Foil as a Power Source

  • Uhm, Young Rang;Choi, Byoung Gun;Kim, Jong Bum;Jeong, Dong-Hyuk;Son, Kwang Jae
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.773-777
    • /
    • 2016
  • A betavoltaic battery was prepared using radioactive $^{63}Ni$ attached to a three-dimensional single trenched P-N absorber. The optimum thickness of a $^{63}Ni$ layer was determined to be approximately $2{\mu}m$, considering the minimum self-shielding effect of beta particles. Electroplating of radioactive $^{63}Ni$ on a nickel (Ni) foil was carried out at a current density of $20mA/cm^2$. The difference of the short-circuit currents ($I_{sc}$) between the pre- and post-deposition of $^{63}Ni$ (16.65 MBq) on the P-N junction was 5.03 nA, as obtained from the I-V characteristics. An improved design with a sandwich structure was provided for enhancing performance.