• Title/Summary/Keyword: Single Crystal Diamond Tool

Search Result 42, Processing Time 0.031 seconds

Micro Machining Characteristics of V-shaped Single Crystal Diamond Tool with Ductile Workpiece (V형 다이아몬드공구에 의한 연질소재의 미세절삭특성 연구)

  • Hong, Sung-Min;Je, Tae-Jin;Lee, Dong-Ju;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.28-33
    • /
    • 2005
  • Recently, trends of TFT-LCD toward larger scale and thinner thickness continue. so, demands of Light Guide Panel (LGP) which is to substitute for prism sheet are appeared. Functions of LGP obtaining polarization of light of the prism sheet as well as the incidence and reflection of light are demanded. This prism type LGP to complete functions of the existing LGP and polarization at once must be supported by micro machining technology of LGP surface. In this research, the machining characteristics of the various materials were analysed by shaping using V-shaped single crystal diamond tool. The characteristics are machined surface, machining force due to the variation of cutting depth. Used specimens are engineering materials, which are 6:4 brass, oxygen-free copper, Al6061, PC, PMMA. The FFT analysis of the measured cutting force was conducted. The cutting characteristics were analyzed and the optimum cutting conditions with materials were established.

  • PDF

Micro V-groove Machining Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초음파 미세 홈 가공)

  • Kim G.D.;Hwang K.S.;Loh B.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.625-628
    • /
    • 2005
  • For precise micro-grooving and surface machining, ultrasonic cyclic elliptical cutting is proposed using two parallel piezoelectric actuators. The piezoelectric actuators are energized by sinusoidal voltages of varying phase which is essenstial to generating elliptical cutting. Experimental setup is composed of ultrasonic motor, single crystal diamond cutting tool, and precise motorized xyz stage. It is confirmed experimentally that the cutting performance, in terms of the cutting force, the burr formation, and the discontinuous chip formation is improved remarkably by applying ultrasonic elliptical vibration cutting.

  • PDF

A Study on the Characteristics of Ultra-Precision Cutting for Al Alloy (Al합금의 초정밀 절삭특성 연구)

  • 김우순;김동현;난바의치
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.44-49
    • /
    • 2003
  • To obtain the surface roughness with range from 10nm to 1nm we need the study of ultra-precision machine, cutting condition, and materials. In this paper, the optimal cutting conditions for getting mirror surface of aluminum alloy have been examined experimentally by using ultra-precision turning machine and sing1e crystal diamond tool. In generally, the cutting conditions such as feed rate and depth of cut have effect on the surface roughness in ultra-precision turning. The result of surface roughness was measured by the ZYGO New View 200. Therefore, The surface roughness and cutting conditions has been clarified. The smooth surface of aluminum alloy less than 1nm RMS, 1nm Rmax can be obtained by the ultra-precision cutting.

Burr and Shape Distortion Micro-Grooving of Non-Ferrous Metals Using a Diamond Tool

  • Ahn, Jung-Hwan;Lim, Han-Seok;Son, Seong-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1244-1249
    • /
    • 2000
  • Burr and shape distortion are two main problems in micro-grooving. In this study, a simplified model is proposed based on large thrust force due to the tool edge radius. Experiments are conducted with a single crystal diamond tool on a 3-axis snaper-like machine varying the depth of cuts, and groove angles on brass, aluminum and OFHC. Experiments have shown that the thrust force becomes a dominant variable in burr generation compared to the principal force when the depth of cut is less than 2${\mu}m$. And fewer burrs develop on more brittle materials. Shape distortion is significant only when the groove angle is small and the depth of cut is larger than 30 ${\mu}m$.

  • PDF

Fabrication of Micro Diamond Tip Cantilever for AFM and its Applications (AFM 부착형 초미세 다이아몬드 팁 켄틸레버의 제작 및 응용)

  • Park J.W.;Lee D.W.
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.395-400
    • /
    • 2005
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin damaged layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The damaged layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

  • PDF

Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool (단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교)

  • Choi, Hwan-Jin;Jeon, Eun-Chae;Choi, Doo-Sun;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

Comparison of Machinability Between PCD Tool and SCD Tool for Large Area Mirror Surface Machining Using Multi-tool by Planer (평삭공정에서 경면가공을 위한 단결정 및 다결정 다이아몬드 다중공구의 가공성 평가)

  • Kim, Chang-Eui;Choi, Hwan-Jin;Jeon, Eun-Chae;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.4
    • /
    • pp.297-301
    • /
    • 2013
  • Mirror surface machining for large area flattening in the display field has a problem such as a tool wear and a increase in machining time due to large area machining. It should be studied to decrease machining time and tool wear. In this paper, multi-tool machining method using a PCD tool and a SCD tool was applied in order to decrease machining time and tool wear. Machining characteristics (cutting force, machined surface and surface roughness) of PCD tool and SCD tool were evaluated in order to apply PCD tool to flattening machining. Based on basic experiments, the PCD/SCD multi-tool method and the SCD single-tool method were compared through surface roughness and machining time for appllying large area mold machining.

Fabrication of Micro Diamond Tip Cantilever for AFM-based Tribo-Nanolithography (AFM 기반 Tribo-Nanolithography 를 위한 초미세 다이아몬드 팁 켄틸레버의 제작)

  • Park Jeong-Woo;Lee Deug-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.39-46
    • /
    • 2006
  • Nano-scale fabrication of silicon substrate based on the use of atomic force microscopy (AFM) was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate by a simple scratching process, has been applied instead of conventional silicon cantilever for scanning. A thin mask layer forms in the substrate at the diamond tip-sample junction along scanning path of the tip. The mask layer withstands against wet chemical etching in aqueous KOH solution. Diamond tip acts as a patterning tool like mask film for lithography process. Hence these sequential processes, called tribo-nanolithography, TNL, can fabricate 2D or 3D micro structures in nanometer range. This study demonstrates the novel fabrication processes of the micro cantilever and diamond tip as a tool for TNL using micro-patterning, wet chemical etching and CVD. The developed TNL tools show outstanding machinability against single crystal silicon wafer. Hence, they are expected to have a possibility for industrial applications as a micro-to-nano machining tool.

Mechanism of Micro-V Grooving with Single Crystal Diamond Tool (단결정 다이어몬드 공구를 이용한 Micro-V 홈 가공기구)

  • Park D.S.;Seo T.I.;Kim J.K.;Seong E.J.;Han J.Y.;Lee E.S.;Cho M.W.;Choi D.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1223-1227
    • /
    • 2005
  • Fine microgroove is the key component to fabricate micro-grating, micro-grating lens and so on. Conventional groove fabrication methods such as etching and lithography have some problems in efficiency and surface integrity. This study deals with the creation of ultra-precision micro grooves using non-rotational diamond tool and CNC machining center. The shaping type machining method proposed in the study allows to produce V-shaped grooves of $40\mu{m}$ in depth with enough dimensional accuracy and surface. For the analysis of machining characteristics in micro V-grooving, three components of cutting forces and AE signal are measured and processed. Experimental results showed that large amplitude of cutting forces and AE appeared at the beginning of every cutting path, and cutting forces had a linear relation with the cross-sectional area of uncut chip thickness. From the results of this study, proposed micro V-grooving technique could be successfully applied to forming the precise optical parts like prism patterns on light guide panel of TFT-LCD.

  • PDF

A Study on the Precision Machining Characteristics in Heavy Cutting of Al-alloy (Al합금의 중절삭시 정밀가공 특성에 관한 연구)

  • 권용기;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.203-208
    • /
    • 2002
  • This paper deals with turning experiments of aluminium alloy using a single crystal diamond with round cutting edge. A face cutting was conducted using a special precision machine to study the characteristic phenomena in heavy cutting of aluminium alloy. In many cases, one of the most important matter on the surface integrity is about a damaged layer remaining just under the surface after machining. A machined surface roughness can be improved at a small geometrical surface roughness under special cutting conditions, even if a steady vibration exists between a tool and a workpiece.

  • PDF