• Title/Summary/Keyword: Simultaneous Localization And Mapping

Search Result 126, Processing Time 0.035 seconds

LiDAR-based Mapping Considering Laser Reflectivity in Indoor Environments (실내 환경에서의 레이저 반사도를 고려한 라이다 기반 지도 작성)

  • Roun Lee;Jeonghong Park;Seonghun Hong
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.2
    • /
    • pp.135-142
    • /
    • 2023
  • Light detection and ranging (LiDAR) sensors have been most widely used in terrestrial robotic applications because they can provide dense and precise measurements of the surrounding environments. However, the reliability of LiDAR measurements can considerably vary due to the different reflectivities of laser beams to the reflecting surface materials. This study presents a robust LiDAR-based mapping method for the varying laser reflectivities in indoor environments using the framework of simultaneous localization and mapping (SLAM). The proposed method can minimize the performance degradations in the SLAM accuracy by checking and discarding potentially unreliable LiDAR measurements in the SLAM front-end process. The gaps in point-cloud maps created by the proposed approach are filled by a Gaussian process regression method. Experimental results with a mobile robot platform in an indoor environment are presented to validate the effectiveness of the proposed methodology.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

SLAM based on feature map for Autonomous vehicle (자율주행 장치를 위한 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Jung, Sung-Young;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1437-1443
    • /
    • 2009
  • This paper is presented an simultaneous localization and mapping (SLAM) algorithm using ultrasonic for robot and electric compass, encoder, and gyro. Generally, localization based upon electric compass, encoder, and gyro can be measured just local position in workspace. However, actual robot must need an information of the absolute position in workspace to perform its mission, Absolute position in workspace could be calculated using SLAM algorithm. To implement SLAM in this paper, a map is built using ultrasonic sensor and hierarchical map building method. And then, we the map will be transformed into a feature map. The absolute position could be calculated using the feature map and map mapping method. As a test bed, we designed and construct an autonomous robot and showed the experimental performance of the proposed SLAM algorithm based on feature map. Experimental result, we verified that robot can found all absolute position on experiments using proposed SLAM algorithm.

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

A Probabilistic Approach for Mobile Robot Localization under RFID Tag Infrastructures (RFID Tag 기반 이동 로봇의 위치 인식을 위한 확률적 접근)

  • Won Dae-Heui;Yang Gwang-Woong;Choi Moo-Sung;Park Sang-Deok;Lee Ho-Gil
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1034-1039
    • /
    • 2005
  • SALM(Simultaneous localization and mapping) and AI(Artificial intelligence) have been active research areas in robotics for two decades. In particular, localization is one of the most important tasks in mobile robot research. Until now expensive sensors such as a laser sensor have been used for mobile robot localization. Currently, the proliferation of RFID technology is advancing rapidly, while RFID reader devices, antennas and tags are becoming increasingly smaller and cheaper. So, in this paper, the smart floor using passive RFID tags is proposed and, passive RFID tags are mainly used for identifying location of the mobile robot in the smart floor. We discuss a number of challenges related to this approach, such as tag distribution (density and structure), typing and clustering. In the smart floor using RFID tags, the localization error results from the sensing area of the RFID reader, because the reader just knows whether the tag is in the sensing range of the sensor and, until now, there is no study to estimate the heading of mobile robot using RFID tags. So, in this paper, two algorithms are suggested to. The Markov localization method is used to reduce the location(X,Y) error and the Kalman Filter method is used to estimate the heading($\theta$) of mobile robot. The algorithms which are based on Markov localization require high computing power, so we suggest fast Markov localization algorithm. Finally we applied these algorithms our personal robot CMR-P3. And we show the possibility of our probability approach using the cheap sensors such as odometers and RFID tags for mobile robot localization in the smart floor

  • PDF

Data Association of Robot Localization and Mapping Using Partial Compatibility Test (Partial Compatibility Test 를 이용한 로봇의 위치 추정 및 매핑의 Data Association)

  • Yan, Rui Jun;Choi, Youn Sung;Wu, Jing;Han, Chang Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.129-138
    • /
    • 2016
  • This paper presents a natural corners-based SLAM (Simultaneous Localization and Mapping) with a robust data association algorithm in a real unknown environment. Corners are extracted from raw laser sensor data, which are chosen as landmarks for correcting the pose of mobile robot and building the map. In the proposed data association method, the extracted corners in every step are separated into several groups with small numbers of corners. In each group, local best matching vector between new corners and stored ones is found by joint compatibility, while nearest feature for every new corner is checked by individual compatibility. All these groups with local best matching vector and nearest feature candidate of each new corner are combined by partial compatibility with linear matching time. Finally, SLAM experiment results in an indoor environment based on the extracted corners show good robustness and low computation complexity of the proposed algorithms in comparison with existing methods.

Identifying Considerations for Developing SLAM-based Mobile Scan Backpack System for Rapid Building Scanning (신속한 건축물 스캔을 위한 SLAM기반 이동형 스캔백팩 시스템 개발 고려사항 도출)

  • Kang, Tae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.3
    • /
    • pp.312-320
    • /
    • 2020
  • 3D scanning began in the field of manufacturing. In the construction field, a BIM (Building Information Modeling)-based 3D modeling environment was developed and used for the overall construction, such as factory prefabrication, structure construction inspection, plant facility, bridge, tunnel structure inspection using 3D scanning technology. LiDARs have higher accuracy and density than mobile scanners but require longer registration times and data processing. On the other hand, in interior building space management, relatively high accuracy is not needed, and the user can conveniently move with a mobile scan system. This study derives considerations for the development of Simultaneous Localization and Mapping (SLAM)-based Scan Backpack systems that move freely and support real-time point cloud registration. This paper proposes the mobile scan system, framework, and component structure to derive the considerations and improve scan productivity. Prototype development was carried out in two stages, SLAM and ScanBackpack, to derive the considerations and analyze the results.

Experiments of Unmanned Underwater Vehicle's 3 Degrees of Freedom Motion Applied the SLAM based on the Unscented Kalman Filter (무인 잠수정 3자유도 운동 실험에 대한 무향 칼만 필터 기반 SLAM기법 적용)

  • Hwang, A-Rom;Seong, Woo-Jae;Jun, Bong-Huan;Lee, Pan-Mook
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.58-68
    • /
    • 2009
  • The increased use of unmanned underwater vehicles (UUV) has led to the development of alternative navigational methods that do not employ acoustic beacons and dead reckoning sensors. This paper describes a simultaneous localization and mapping (SLAM) scheme that uses range sonars mounted on a small UUV. A SLAM scheme is an alternative navigation method for measuring the environment through which the vehicle is passing and providing the relative position of the UUV. A technique for a SLAM algorithm that uses several ranging sonars is presented. This technique utilizes an unscented Kalman filter to estimate the locations of the UUV and surrounding objects. In order to work efficiently, the nearest neighbor standard filter is introduced as the data association algorithm in the SLAM for associating the stored targets returned by the sonar at each time step. The proposed SLAM algorithm was tested by experiments under various three degrees of freedom motion conditions. The results of these experiments showed that the proposed SLAM algorithm was capable of estimating the position of the UUV and the surrounding objects and demonstrated that the algorithm will perform well in various environments.

Mapless Navigation Based on DQN Considering Moving Obstacles, and Training Time Reduction Algorithm (이동 장애물을 고려한 DQN 기반의 Mapless Navigation 및 학습 시간 단축 알고리즘)

  • Yoon, Beomjin;Yoo, Seungryeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.377-383
    • /
    • 2021
  • Recently, in accordance with the 4th industrial revolution, The use of autonomous mobile robots for flexible logistics transfer is increasing in factories, the warehouses and the service areas, etc. In large factories, many manual work is required to use Simultaneous Localization and Mapping(SLAM), so the need for the improved mobile robot autonomous driving is emerging. Accordingly, in this paper, an algorithm for mapless navigation that travels in an optimal path avoiding fixed or moving obstacles is proposed. For mapless navigation, the robot is trained to avoid fixed or moving obstacles through Deep Q Network (DQN) and accuracy 90% and 93% are obtained for two types of obstacle avoidance, respectively. In addition, DQN requires a lot of learning time to meet the required performance before use. To shorten this, the target size change algorithm is proposed and confirmed the reduced learning time and performance of obstacle avoidance through simulation.

Experimental result of Real-time Sonar-based SLAM for underwater robot (소나 기반 수중 로봇의 실시간 위치 추정 및 지도 작성에 대한 실험적 검증)

  • Lee, Yeongjun;Choi, Jinwoo;Ko, Nak Yong;Kim, Taejin;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.108-118
    • /
    • 2017
  • This paper presents experimental results of realtime sonar-based SLAM (simultaneous localization and mapping) using probability-based landmark-recognition. The sonar-based SLAM is used for navigation of underwater robot. Inertial sensor as IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) and external information from sonar image processing are fused by Extended Kalman Filter (EKF) technique to get the navigation information. The vehicle location is estimated by inertial sensor data, and it is corrected by sonar data which provides relative position between the vehicle and the landmark on the bottom of the basin. For the verification of the proposed method, the experiments were performed in a basin environment using an underwater robot, yShark.