• Title/Summary/Keyword: Simulator-type

Search Result 525, Processing Time 0.026 seconds

Numerical Analysis of Moving Type and Static Type Electrodynamic Suspension Simulator with Superconducting Levitation Magnet (초전도 부상자석을 이용한 동적 및 정지형 반발식 자기부상 시험기의 수치해석)

  • Lee, E.R.;Bae, D.K.;Chung, Y.D.;Yoon, Y.S.;Ko, T.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 2009
  • This paper presents the numerical simulation results on the moving type electrodynamic suspension (EDS) simulator and static type EDS simulator using high-Tc superconducting (HTS) levitation magnet. The levitation force of the EDS system is formed by the reaction between the moving magnet and the fixed ground conductor. The possible two ways to simulate the EDS system were simulated in this paper by using finite element method (FEM). The first way was the moving type simulator which consists of the fixed HTS magnet and the moving ground conductor. The second way was the static type simulator which consists of the fixed magnet, the fixed ground conductor and the ac current supply system. To verify the characteristics of high speed EDS system with the moving type simulator heavy, large and fast moving ground conductor is needed. The static type simulator can get the characteristics of the high speed EDS system by applying equivalent ac current to velocity, therefore it does not need large moving part. The static type EDS simulator, which can consist of an HTS magnet, the fixed ground conductor(s), an AC power supply and the measuring devices, also test the effect of the shape of the ground conductor easily. The plate type ground conductor made stronger levitation force than ring type ground conductor. Although the outer diameter 335 mm ring type ground conductor (Ring3) was larger than the outer diameter 235 mm ground conductor (Ring2), the levitation force by Ring2 was stronger than that by Ring3. From the calculation results on this paper, the consideration of the magnetic flux distribution according to the levitation height should be included in the process of the ground conductor design.

Development of the Real-Time Simulator of a Turning-Type Sluice Gate Actuated by the Hydraulic Cylinder (유압실린더 구동식 전도 수문의 실시간 모의시험기 개발)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.192-198
    • /
    • 2006
  • The real-time simulator of a turning-type sluice gate actuated by the hydraulic cylinders is developed using a PC and a visual C++ program language. The real-time simulator receives the directional control valve signal selected by the operator using the mouse, updates the state variables of the turning-type sluice gate system responding to the control signal, and draws the moving figures of the sluice gate, cylinder, reserved water every drawing time on the PC monitor. Also, the operator can observe the sluice gate angle, cylinder force, cylinder pressures, and hydraulic power representing the operation of sluice gate system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the turning-type sluice gate system.

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

The Development of Full-Scope Replica Type Simulator for PWR Nuclear Power Plants (가압경수로 원자력 발전소의 전범위 복제형 시뮬레이터 개발)

  • 이중근
    • Journal of the Korea Society for Simulation
    • /
    • v.6 no.1
    • /
    • pp.85-96
    • /
    • 1997
  • Designing and constructing a proper simulator for real power plants requires extensive research in human engineering and computer science and integration of different fields of technologies such as system analysis, operational knowledge for nuclear plant, etc. A full scope replica type simulator for nuclear power plant is developed. The simulator has the same feature and operational functions as one in the main control room (MCR) of a reference power plant. The simulator provides the necessary training to recover or reduce damages from accidents that usually are unpredictable. This paper describes the configurations and characteristics for the simulator that is developed for Younggwang Nuclear Power Plant #3,4 which is the basic model of the Korean Nuclear Power Plant. The paper also describes technical aspects of Auto Code Generator that is used for developing the simulator. The successful development of the simulator will contribute to improve safety in operation of nuclear power plants.

  • PDF

Development of Target Signal Simulator for Multi-Beam Type FMCW Radar (다중빔 방식의 FMCW 레이더 표적신호 시뮬레이터 개발)

  • Lee, Seung-Youn;Choe, Tok-Son;Jung, Young-Hun;Lee, Seok-Jae;Yoon, Joo-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.343-349
    • /
    • 2012
  • To detect targets for autonomous navigation of unmanned ground vehicle, mounted sensors are required to work all-weather condition. In this point of view, the FMCW radar is quietly appropriate. In this paper, we present development results of target signal simulator for multi-beam type FMCW radar. A target signal simulator make pseudo target signals which simulates multiple moving targets. And we describe how to make hit information for each target in multi-beam type radar. The developed methods are utilized for target tracking device. Moreover it can be applied to similar target signal simulator.

Development of a Simulator of Vehicle Equipped with Hydrostatic Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System (유압 축압기식 제동에너지 회생시스템을 장착한 정유압구동식 차량의 모의시험기 개발)

  • 이성래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.119-126
    • /
    • 2003
  • The simulator of a vehicle equipped with hydrostatic transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston, pump plate angle and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

Development of a Simulator of Vehicle Equipped with Mechanical Transmission and Hydraulic Accumulator Type-Braking Energy Regeneration System (유압 축압기식 제동에너지 희생시스템을 장착한 기계식 변속기 차량의 모의시험기 개발)

  • 이성래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.180-186
    • /
    • 2004
  • The simulator of a vehicle equipped with mechanical transmission and hydraulic accumulator type-braking energy regeneration system is developed using a PC. The simulator receives the shift lever position, the accelerator pedal angle and the brake pedal angle generated by the operator using the keyboard, updates the state variables of the energy regeneration system responding to the input signals, and draws the moving pictures of the accumulator piston and pump/motor plate angle every drawing time on the PC monitor. Also, the operator can observe the shift lever position, the accel pedal angle, brake pedal angle, pressures of accumulators, vehicle speed, hydraulic torque, engine torque and air brake torque representing the operation of braking energy regeneration system through the PC monitor every drawing time. The simulator can be a very useful tool to design and improve the braking energy regeneration system.

A Study on the Maximum Target Distance Using a Flight Simulator of Glide-Type Ammunition (활공형 탄약의 비행모사 시뮬레이터를 활용한 조건별 최대사거리 연구)

  • Shin, Seung-je;Kim, Whan-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.6
    • /
    • pp.698-704
    • /
    • 2018
  • When the new ammunition is designed, it is necessary to confirm in advance how long the target distance is depends on the shape and weight of the designed ammunition. Therefore we can use commercial software such as PRODAS to predict the target distance in the design stage. This commercial software has aerodynamic data for various ammunition shape and calculates the target range by calculating the kinetic equations of the ammunition using the aerodynamic data most similar to the designed ammunition. The ammunition for predicting the target distance through software such as PRODAS is a non-guided ammunition that has no control after launch but the glide type ammunition is guided and control ammunition. So it is predicts the state of ammunition after the launch. A new type of simulator is needed to analyze the maximum range and to verify the onboard guided and control algorithm. The simulator constructed in this paper is an optimized simulator for glide type ammunition. Unlike unmanned aircraft and guided missiles. The rotation characteristics of the ammunition are considered and the navigation initialization algorithm is applied. The constructed simulator confirmed the performance by performing maximum range analysis of glide type ammunition.

Development and Application of Simulator for Hydraulic Excavator (유압 굴삭기용 시뮬레이터 개발 및 응용)

  • Lim, Tae-Hyeong;Yang, Soon-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.142-148
    • /
    • 2006
  • Hydraulic excavators have been popular devices in construction fields because of their multi-workings and economic efficiency. The mathematical models of excavators have many nonlinearities because of opening characteristics and dead zone of main control valve(MCV), oil temperature variation, etc. The objective of this paper is to develop a simulator for hydraulic excavator using AMESim. Components and their circuits are expressed graphically. Also, parameters and nonlinear characteristics are considered in a text style. From the simulation results, fixed spring stiffness of MCV can not obtain the satisfactory accuracy of spool displacement under whole P-Q diagrams. Closed loop type MCV containing a proportional gain, is proposed in this paper that can reduce displacement error. The ability of closed loop MCV is verified through comparing with normal type MCV using AMESim simulator. The excavator simulator can be used to forecast the attachment behaviors when components, mechanical attachments and hydraulic circuits change, or other control algorithms are applied. The simulator could be a kind of development platform for new excavators.

A Design of Power Circuit and LCL Filter for Switching Mode PV Simulator (스위칭방식 PV Simulator의 전력회로와 LCL필터 설계)

  • Lee, Sung-Min;Yu, Tae-Sik;Kim, Hyo-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.431-437
    • /
    • 2012
  • PV simulators are essential equipment for testing power conditioning systems (PCS) which are one of an important part in PV generator systems, for testing before shipment. High dynamic PV simulator is required since MPPT(Maximum Power Point Tracking) test procedure has been established by EN50530 regulation recently. Most high quality PV simulator prevailed in the market is linear type which however has low efficiency. This paper proposes design guide lines for the power stage and LCL type filter cooperating with a switching mode PV simulator that shows high efficiency and very low power consumption. Proposed theory is verified by experiment.