• 제목/요약/키워드: Simulations

검색결과 15,834건 처리시간 0.031초

이상공정이론 및 하이브리드 박막/쉘 방법을 이용한 박판성형품의 충돌거동 해석 (Incorporation of Sheet Forming Effects in Crash Simulations Using Ideal Forming Theory and Hybrid Membrane/shell Method)

  • 류한선;정관수;윤정환;한정석;윤재륜;강태진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.148-151
    • /
    • 2003
  • In order to achieve reliable but cost-effective crash simulations of stamped parts, sheet forming process effects were incorporated in simulations using the ideal forming theory mixed with the 3D hybrid membrane/shell method, while the subsequent crash simulations were carried out using a dynamic explicit finite element code. Example solutions performed for forming and crash simulations of I- and S-shaped rails verified that the proposed approach is cost-effective without sacrificing accuracy. The method required a significantly small amount of additional computation time, less than 3% for the specific examples, to incorporate sheet forming effects to crash simulations. As for the constitutive equation, the combined isotropic-kinematic hardening law and the non-quadratic anisotropic yield stress potential as well as its conjugate strain-rate potential were used to describe the anisotropy of AA6114-T4 aluminum alloy sheets.

  • PDF

Wind flow simulations in idealized and real built environments with models of various level of complexity

  • Abdi, Daniel S.;Bitsuamlak, Girma T.
    • Wind and Structures
    • /
    • 제22권4호
    • /
    • pp.503-524
    • /
    • 2016
  • The suitability of Computational Fluid Dynamics (CFD) simulations on the built environment for the purpose of estimating average roughness characteristics and for studying wind flow patterns within the environment is assessed. Urban models of various levels of complexity are considered including an empty domain, array of obstacles arranged in regular and staggered manners, in-homogeneous roughness with multiple patches, a semi-idealized built environment, and finally a real built environment. For each of the test cases, we conducted CFD simulations using RANS turbulence closure and validated the results against appropriate methods: existing empirical formulas for the homogeneous roughness case, empirical wind speed models for the in-homogeneous roughness case, and wind tunnel tests for the semi-idealized built environment case. In general, results obtained from the CFD simulations show good agreement with the corresponding validation methods, thereby, giving further evidence to the suitability of CFD simulations for built environment studies consisting of wide-ranging roughness. This work also provides a comprehensive overview of roughness modeling in CFD-from the simplest approach of modeling roughness implicitly through wall functions to the most elaborate approach of modeling roughness explicitly for the sake of accurate wind flow simulations within the built environment.

Selection of Energy Conservation Measures for Building Energy Retrofit: a Comparison between Quasi-steady State and Dynamic Simulations in the Hands of Users

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • 제16권6호
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: Quasi-steady state simulations have played a pivoting role to expand the user group of simulation to design engineers and architects in Korea. Initially they are introduced in the market as a building energy performance rating tool. In domestic practice, however, quasi-steady state simulations seem to be regarded as a de facto simulation only available for energy retrofit. Selection of ECMs and economic feasibility analysis are being decided through these tools, which implies that running these tools has become a norm step of the Investment-grade Audit. Method: This study aims at identifying issues and problems with the current practice via test cases, analyzing the reasons and opportunities, and then eventually suggesting proper uses of quasi-steady state and dynamic simulations. Result: The functionality of quasi-steady state simulations is more optimized to the rating. If they are to used for energy retrofits, their off-the-shelf functions also need to be expanded for customization and detailed reports. Yet their roles may be limited only to the go/no go decision; because their algorithms are still weak at precisely estimating energy and load savings that are required for making investment decisions compared to detailed simulations.

KVN과 동아시아 VLBI 관측시설을 이용한 SiO 메이저 모델이미지 모의실험 (IMAGE SIMULATIONS OF THE KVN AND EAST ASIA VLBI FACILITIES WITH A SiO MASER MODEL IMAGE)

  • 이지윤;정태현
    • 천문학논총
    • /
    • 제25권1호
    • /
    • pp.15-21
    • /
    • 2010
  • We report results of image simulations of the KVN and VLBI experiments of the KVN with several other East Asia VLBI facilities. To investigate their imaging capability a model-generated image of 7 mm SiO maser emission in Mira variables is used. The resulting simulations show that the joint VLBI experiments of the KVN with East Asia VLBI facilities can produce reasonably good images at 7 mm spectral line experiments. However, there are no apparent differences in peak flux densities and images themselves in the simulations among different combinations of these facilities. In addition, the simulated images of observations which include bigger antennas do not show any expected improvement to the image sensitivity. The small variations in the peak flux density and similar image sensitivity, irrespective of different antenna sizes or numbers of baselines used in the simulations, turn out due to a specific characteristic of the adopted model image. Test simulations using another SiO maser image from R Cas observations prove that the participation of bigger antennas in the VLBI experiments does improve image sensitivity. We confirm the need of additional longer baselines in the experiments of the East Asia VLBI facilities to study very compact maser clumps on sub-milliarcsecond scales.

조망경관 평가를 위한 경관 시뮬레이션의 신뢰도 제고 연구 -시뮬레이션 화각 표준화를 중심으로- (The Study for Securing of Reliability of Landscape View Evaluation by Simulation Work - The simulation angle of view to the standardization of -)

  • 박병규
    • KIEAE Journal
    • /
    • 제13권1호
    • /
    • pp.109-123
    • /
    • 2013
  • The study is to probe a technical alternative to enhance the reliability and accuracy of the results of various landscape simulations. This study to present technical criteria that are necessary in each stage of target site analysis, picture taking, and computer synthesis and, through these to present supplementary plans to enhance the reliability and accuracy of landscape simulations. In order to derive more practical and empirical results in terms of the reliability of the results of landscape simulations, examples that actually passed landscape review were selected. With regard to study process, an analysis was made first to analyze the landscape report data of designs that passed the review to analyze their characteristics, to be followed by an integrated analysis of problems that were revealed in various landscape simulations. Important factors that affect directly the work of landscape simulations such as the specification of camera lenses that were used in picture taking, distance, and angle. Design the work was carried out using Auto CAD, 3DS Max, and Photoshop program in the same way as in actual design. For verification of their accuracy and reliability, the results were entrusted to experts who have implemented similar jobs. To seduce differences from those too landscape simulations that conduct trial experiment of the virtual space that are to be created in the future with accurate numerical values.

PSO법을 응용한 확률적 시뮬레이션의 최적화 기법 연구 (A Study on Modified PSO for the Optimization of Stochastic Simulations)

  • 김선범;김정훈;이동훈
    • 한국시뮬레이션학회논문지
    • /
    • 제22권4호
    • /
    • pp.21-28
    • /
    • 2013
  • 일반적으로 최적화 문제에서 군사 시뮬레이션과 같이 결과가 확률적으로 나타나는 경우를 계산할 때에는 문제를 모델링 하여 일반적인 최적화 기법을 적용하는 것에 어려움이 있다. 본 논문에서는 이러한 군사 시뮬레이션의 특징을 반영하는 복잡한 반응표면을 가진 확률적 평가 함수를 정의하였다. 그리고 이러한 확률적 시뮬레이션에 대해 기존의 PSO법이 가진 약점을 보완하는 기법을 제안하였다. 제안한 기법을 이용해 평가 함수에 대한 최적화를 시행하였으며 최적화의 속도와 정확도에 영향을 미치는 계산 조건들의 상호작용을 분석하였다. 이를 통해 본 논문에서 제안한 확률적 시뮬레이션의 최적화 전략을 제시하였다.

Modeling unmanned aerial vehicle jet ignition wankel engines with CAE/CFD

  • Boretti, Albert
    • Advances in aircraft and spacecraft science
    • /
    • 제2권4호
    • /
    • pp.445-467
    • /
    • 2015
  • The paper presents some details of the CFD modeling of a novel design where jet ignition devices replace the traditional spark plugs for a faster and more complete combustion. The numerical simulations show how the pre-chamber jet ignition in a Wankel engine differs from reciprocating piston engine applications. The jets issuing from the jet ignition pre-chamber have many different speeds in the different directions as the pressure build-up at the trailing edge of the rotating chamber makes extremely fast the ignition of the chamber mixture in the direction of rotation. Conversely it prevents the jet ignition in the opposite direction. Careful positioning along the periphery and design of the connecting pipes and the prechamber volume with the help of CFD simulations permits to achieve extremely fast and complete combustion as impossible with spark plugs. The paper proposes results of CFD simulations of the combustion evolution within a jet ignited Wankel engine rotor, detailing challenges and opportunities of the application, as well as a first assessment of the impact the faster and more complete combustion permitted by jet ignition may have on the performances of Wankel engines for unmanned aerial vehicles applications.

MULTISCALE MODELING OF RADIATION EFFECTS ON MATERIALS: PRESSURE VESSEL EMBRITTLEMENT

  • Kwon, Jun-Hyun;Lee, Gyeong-Geun;Shin, Chan-Sun
    • Nuclear Engineering and Technology
    • /
    • 제41권1호
    • /
    • pp.11-20
    • /
    • 2009
  • Radiation effects on materials are inherently multiscale phenomena in view of the fact that various processes spanning a broad range of time and length scales are involved. A multiscale modeling approach to embrittlement of pressure vessel steels is presented here. The approach includes an investigation of the mechanisms of defect accumulation, microstructure evolution and the corresponding effects on mechanical properties. An understanding of these phenomena is required to predict the behavior of structural materials under irradiation. We used molecular dynamics (MD) simulations at an atomic scale to study the evolution of high-energy displacement cascade reactions. The MD simulations yield quantitative information on primary damage. Using a database of displacement cascades generated by the MD simulations, we can estimate the accumulation of defects over diffusional length and time scales by applying kinetic Monte Carlo simulations. The evolution of the local microstructure under irradiation is responsible for changes in the physical and mechanical properties of materials. Mechanical property changes in irradiated materials are modeled by dislocation dynamics simulations, which simulate a collective motion of dislocations that interact with the defects. In this paper, we present a multi scale modeling methodology that describes reactor pressure vessel embrittlement in a light water reactor environment.

REMOTE NUMERICAL SIMULATIONS OF THE INTERACTION OF HIGH VELOCITY CLOUDS WITH RANDOM MAGNETIC FIELDS

  • Santikkan, Alfredo;Hernandez-Cervantes, Liliana;Gonzalez-Ponce, Alejandro;Kim, Jong-Soo
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.165-169
    • /
    • 2007
  • The numerical simulations associated with the interaction of High Velocity Clouds (HVC) with the Magnetized Galactic Interstellar Medium (ISM) are a powerful tool to describe the evolution of the interaction of these objects in our Galaxy. In this work we present a new project referred to as Theoretical Virtual i Observatories. It is oriented toward to perform numerical simulations in real time through a Web page. This is a powerful astrophysical computational tool that consists of an intuitive graphical user interface (GUI) and a database produced by numerical calculations. In this Website the user can make use of the existing numerical simulations from the database or run a new simulation introducing initial conditions such as temperatures, densities, velocities, and magnetic field intensities for both the ISM and HVC. The prototype is programmed using Linux, Apache, MySQL, and PHP (LAMP), based on the open source philosophy. All simulations were performed with the MHD code ZEUS-3D, which solves the ideal MHD equations by finite differences on a fixed Eulerian mesh. Finally, we present typical results that can be obtained with this tool.

SPH SIMULATIONS OF BARRED GALAXIES: DYNAMICAL EVOLUTION OF GASEOUS DISK

  • ANN HONG BAE;LEE HVUNG MOK
    • 천문학회지
    • /
    • 제33권1호
    • /
    • pp.1-17
    • /
    • 2000
  • We have performed extensive simulations of response of gaseous disk in barred galaxies using SPH method. The gravitational potential is assumed to be generated by disk, bulge, halo, and bar. The mass of gaseous disk in SPH simulation is assumed to be negligible compared to the stellar and dark mass component, and the gravitational potential generated by other components is fixed in time. The self-gravity of the gas is not considered in most simulations, but we have made a small set of simulations including the self-gravity of the gas. Non-circular component of velocity generated by the rotating, non-axisymmetric potential causes many interesting features. In most cases, there is a strong tendency of concentration of gas toward the central parts of the galaxy. The morphology of the gas becomes quite complex, but the general behavior can be understood in terms of simple linear approximations: the locations and number of Lindblad resonances play critical role in determining the general distribution of the gas. We present our results in the form of 'atlas' of artificial galaxies. We also make a brief comment on the observational implications of our calculations. Since the gaseous component show interesting features while the stellar component behaves more smoothly, high resolution mapping using molecular emission line for barred galaxies would be desirable.

  • PDF