• 제목/요약/키워드: Simulation-Optimization

검색결과 3,077건 처리시간 0.026초

항공기 날개 설계를 위한 강건성 및 신뢰성 최적 설계 기법의 적용 (Application of the Robust and Reliability-Based Design Optimization to the Aircraft Wing Design)

  • 전상욱;이동호;전용희;김정화
    • 한국항공우주학회지
    • /
    • 제34권8호
    • /
    • pp.24-32
    • /
    • 2006
  • 결정론적인 최적 설계 방법을 이용하는 경우 불확실성의 영향으로 인하여 제약조건의 위반이나 목표 성능의 저하를 초래할 수 있다. 이러한 까닭에 불확실성하에서 제약 조건에 대한 신뢰성을 보장하고 목적함수의 강건성을 확보하는 설계가 필요하다. 그러므로 본 연구에서는 강건성과 신뢰성을 평가하기 위하여 Monte Carlo Simulation(MCS)을 이용하였으며, 계산 효율의 증가를 위하여 MCS에 적합한 근사모델을 선정하는 과정을 거쳐 신경망 모델을 채택하게 되었다. 이를 공력-구조가 연동된 항공기 날개 설계 문제에 적용하여 봄으로써 그 가능성을 타진하였다. 불확실성을 고려한 최적 설계를 수행한 결과 요구되는 신뢰도 수준을 만족시키면서 baseline보다 강건한 최적해를 탐색하는 것이 가능하였다.

설계공간 최적화를 이용한 뼈 성장 모사 (A Simulation Method for Bone Growth Using Design Space Optimization)

  • 장인권;곽병만
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.722-727
    • /
    • 2006
  • Bone fracture healing is one of the important topics in biomechanics, demanding computation simulations due to the difficulty of obtaining experimental or clinical results. In this study, we adopt the design space optimization method which was established by the authors as a tool for the simulation of bone growth using its evolutionary characteristics. As the mechanical stimulus, strain energy density is used. We assume that bone tissues over a threshold strain energy density will be differentiated and bone tissues below another threshold will be resorbed. Under compression and torsion as loadings, the filling process of the defect is well illustrated following the given mechanical criterion. It is shown that the design space optimization is an excellent tool for simulating the evolutionary process of bone growth, which has not been possible otherwise.

정책적 안전재고의 비용 최적화 : 제록스 소모품 유통공급망 사례연구 (Policy Safety Stock Cost Optimization : Xerox Consumable Supply Chain Case Study)

  • 서은석
    • 대한산업공학회지
    • /
    • 제41권5호
    • /
    • pp.511-520
    • /
    • 2015
  • Inventory, cost, and the level of service are three interrelated key metrics that most supply chain organizations are striving to optimize. One way to achieve this goal is to create a simulation model to conduct sensitivity analysis and optimization on several different supply chain policies that can be implemented in actual operation. In this paper, a case of Xerox global supply chain modeling and analysis to assess several "what if" scenarios for the consumable policy safety stock is presented. The simulation model, combined with analytical cost model and optimization module, is used to optimize the policy safety stock level to achieve the lowest total value chain cost. It was shown quantitatively that the policy safety stock can be reduced, but it is offset by the inbound premium transportation cost to expedite supplies in shortage, and the outbound premium transportation cost to send supplies to customers via express shipment, requiring fine balance.

최적화와 시뮬레이션을 이용한 콜센터의 인력 배치 연구 (The Staffing Problem at the Call Center by Optimization and Simulation)

  • 김성문;나정은;김수미
    • 산업공학
    • /
    • 제24권1호
    • /
    • pp.40-50
    • /
    • 2011
  • We develop a nonlinear integer programming model which minimizes the total cost with the optimal number of operators to hire and their optimal allocation to the tasks under the diverse constraints such as the weekly, daily, and hourly maximum allowable abandonment rates for the time-varying inbound call volume. We present a case study based on actual data at a call center, in order to prove the validity of applying the optimization method proposed. By the one-sample two-tailed t-test, we confirm that the expected abandonment rates resulting from the optimization method are identical with the ones from the discrete-event simulation within specified confidence intervals.

대형 후육 LH형 탄성구조 프레임의 사출성형 최적화에 관한 연구 (A study on optimization of injection molding of large thick LH type elastic frame)

  • 이성희
    • Design & Manufacturing
    • /
    • 제16권1호
    • /
    • pp.62-69
    • /
    • 2022
  • In the present study, the injection molding optimization of a large thick LH type elastic frames for the reduction of warpage was performed. Two kinds of fine and coarse finite element models were prepared to investigate the efficiency of analysis time and quality on simulation results. In order to derive injection molding conditions that can minimize distortion of parts, it was investigated that the effects of mold temperature, resin temperature, injection time, hold pressure switching time, holding pressure and the hold time on deformation characteristics using the design of experiments. The main influential factors on the warpage were found from the optimization simulation and the geometry data of the warpage result was converted into an initial model for injection simulation. It was shown that a coarse model with good mesh quality could be adapted for mold design since the total analysis time using the proposed model was reduced to 1/10. The suggested inversed warpage model produced the best minimized result of warpage.

단일 실행 시뮬레이션 최적화를 위한 Reverse-Simulation 기법 (Reverse-Simulation Method for Single Run Simulation Optimization)

  • 이영해
    • 한국시뮬레이션학회논문지
    • /
    • 제5권2호
    • /
    • pp.85-93
    • /
    • 1996
  • Simulation is commonly used to find the best values of decision variables for problems which defy analytical solutions. This objective is similar to that of optimization problems and thus, mathematical programming techniques may be applied to simulation. However, the application of mathematical programming techniques, e.g., the gradient methods, to simulation is compounded by the random nature of simulation responses and by the complexity of the statistical issues involved. In this paper, therefore, we explain the Reverse-Simulation method to optimize a simulation model in a single simulation run. First, we point the problem of the previous Reverse-Simulation method. Secondly, we propose the new algorithm to solve the previous method and show the efficiency of the proposed algorithm.

  • PDF

불확정성을 고려한 적층판 결합공정의 강건최적설계 (A Study on Robust Design Optimization of Layered Plates Bonding Process Considering Uncertainties)

  • 이우혁;박정진;최주호;이수용
    • 대한기계학회논문집A
    • /
    • 제31권1호
    • /
    • pp.113-120
    • /
    • 2007
  • Design optimization of layered plates bonding process is conducted by considering uncertainties in a manufacturing process, in order to reduce the crack failure arising due to the residual stress at the surface of the adherent which is caused by different thermal expansion coefficients. Robust optimization is peformed to minimize the mean as well as its variance of the residual stress, while constraining the distortion as well as the instantaneous maximum stress under the allowable reliability limits. In this optimization, the dimension reduction (DR) method is employed to quantify the reliability such as mean and variance of the layered plate bonding. It is expected that the DR method benefits the optimization from the perspectives of efficiency, accuracy, and simplicity. The obtained robust optimal solution is verified by the Monte Carlo simulation.

Genetic algorithms for balancing multiple variables in design practice

  • Kim, Bomin;Lee, Youngjin
    • Advances in Computational Design
    • /
    • 제2권3호
    • /
    • pp.241-256
    • /
    • 2017
  • This paper introduces the process for Multi-objective Optimization Framework (MOF) which mediates multiple conflicting design targets. Even though the extensive researches have shown the benefits of optimization in engineering and design disciplines, most optimizations have been limited to the performance-related targets or the single-objective optimization which seek optimum solution within one design parameter. In design practice, however, designers should consider the multiple parameters whose resultant purposes are conflicting. The MOF is a BIM-integrated and simulation-based parametric workflow capable of optimizing the configuration of building components by using performance and non-performance driven measure to satisfy requirements including build programs, climate-based daylighting, occupant's experience, construction cost and etc. The MOF will generate, evaluate all different possible configurations within the predefined each parameter, present the most optimized set of solution, and then feed BIM environment to minimize data loss across software platform. This paper illustrates how Multi-objective optimization methodology can be utilized in design practice by integrating advanced simulation, optimization algorithm and BIM.

Numerical Simulation of the Flat Die for Shape Optimization in the Single-screw Extrusion Process

  • Joon Ho Moon;See Jo Kim
    • Elastomers and Composites
    • /
    • 제57권4호
    • /
    • pp.147-156
    • /
    • 2022
  • In this study, we chose a flat die to optimize a general die geometry. The optimization was aimed at obtaining a uniform velocity distribution across the exit of the die. For the optimization, the input and output design parameters were randomly computed, and response surfaces were generated to obtain statistical data for the minimum and maximum sensitivities computed during optimization. Subsequently, object functions with constraints were numerically computed to obtain the minimum errors in the velocity difference (i.e., variable "Outp" in this study). Finally, we obtained the candidate optimized dataset. Note that the current numerical computations were simultaneously conducted for an entire extruder, i.e., screw plus die. The numerical outlet velocity distributions in the modified die geometry tended to be much more uniform than the conventional distributions in the current optimization processes for this specific flat die.

지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계 (Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm)

  • 조재훈;김용태
    • 전기학회논문지
    • /
    • 제66권12호
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.