• Title/Summary/Keyword: Simulation-Based Optimization

Search Result 1,450, Processing Time 0.027 seconds

Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building

  • Nguyen, Hung Khanh;Song, Ju Bin
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.662-671
    • /
    • 2012
  • Plug-in hybrid electric vehicles (PHEVs) will be widely used in future transportation systems to reduce oil fuel consumption. Therefore, the electrical energy demand will be increased due to the charging of a large number of vehicles. Without intelligent control strategies, the charging process can easily overload the electricity grid at peak hours. In this paper, we consider a smart charging and discharging process for multiple PHEVs in a building's garage to optimize the energy consumption profile of the building. We formulate a centralized optimization problem in which the building controller or planner aims to minimize the square Euclidean distance between the instantaneous energy demand and the average demand of the building by controlling the charging and discharging schedules of PHEVs (or 'users'). The PHEVs' batteries will be charged during low-demand periods and discharged during high-demand periods in order to reduce the peak load of the building. In a decentralized system, we design an energy cost-sharing model and apply a non-cooperative approach to formulate an energy charging and discharging scheduling game, in which the players are the users, their strategies are the battery charging and discharging schedules, and the utility function of each user is defined as the negative total energy payment to the building. Based on the game theory setup, we also propose a distributed algorithm in which each PHEV independently selects its best strategy to maximize the utility function. The PHEVs update the building planner with their energy charging and discharging schedules. We also show that the PHEV owners will have an incentive to participate in the energy charging and discharging game. Simulation results verify that the proposed distributed algorithm will minimize the peak load and the total energy cost simultaneously.

Elite Ant System for Solving Multicast Routing Problem (멀티캐스트 라우팅 문제 해결을 위한 엘리트 개미 시스템)

  • Lee, Seung-Gwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.147-152
    • /
    • 2008
  • Ant System(AS) is new meta heuristic for hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as greedy search. It was first proposed for tackling the well known Traveling Salesman Problem. In this paper, AS is applied to the Multicast Routing Problem. Multicast Routing is modeled as the NP-complete Steiner tree problem. This is the shortest path from source node to all destination nodes. We proposed new AS to resolve this problem. The proposed method selects the neighborhood node to consider all costs of the edge and the next node in state transition rule. Also, The edges which are selected elite agents are updated to additional pheromone. Simulation results of our proposed method show fast convergence and give lower total cost than original AS and $AS_{elite}$.

  • PDF

Parallel Genetic Algorithm-Tabu Search Using PC Cluster System for Optimal Reconfiguration of Distribution Systems

  • Mun Kyeong-Jun;Lee Hwa-Seok;Park June-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.2
    • /
    • pp.116-124
    • /
    • 2005
  • This paper presents an application of the parallel Genetic Algorithm-Tabu Search (GA- TS) algorithm, and that is to search for an optimal solution of a reconfiguration in distribution systems. The aim of the reconfiguration of distribution systems is to determine the appropriate switch position to be opened for loss minimization in radial distribution systems, which is a discrete optimization problem. This problem has many constraints and it is very difficult to solve the optimal switch position because of its numerous local minima. This paper develops a parallel GA- TS algorithm for the reconfiguration of distribution systems. In parallel GA-TS, GA operators are executed for each processor. To prevent solution of low fitness from appearing in the next generation, strings below the average fitness are saved in the tabu list. If best fitness of the GA is not changed for several generations, TS operators are executed for the upper 10$\%$ of the population to enhance the local searching capabilities. With migration operation, the best string of each node is transferred to the neighboring node after predetermined iterations are executed. For parallel computing, we developed a PC-cluster system consisting of 8 PCs. Each PC employs the 2 GHz Pentium IV CPU and is connected with others through switch based rapid Ethernet. To demonstrate the usefulness of the proposed method, the developed algorithm was tested and is compared to a distribution system in the reference paper From the simulation results, we can find that the proposed algorithm is efficient and robust for the reconfiguration of distribution system in terms of the solution quality, speedup, efficiency, and computation time.

Study on the Elimination of Residual Voltage in Quarter Wave Short Stub Surge Arrestor (4분의 1 파장 단락 스터브 방식 서지 어레스터의 잔여 전압 제거에 관한 연구)

  • Kim, Yeon-Tae;Won, Tae-Yeong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.8
    • /
    • pp.33-44
    • /
    • 2000
  • The lightning with high voltage and current can enter the basestations for mobile communication through their antenna. The device which can protect the basestation against the lightning, is surge arrestor. In this paper, the concept, kind, operating mechanism, design and fabrication of surge arrestor were studied. Based on the studied data, variable surge arrestors were designed for the current mobile communication service like a cellular, GSM and PCS and the next generation mobile communication like a IMT-2000. Computer simulation for the prediction of their characteristics and inner structure optimization for the improvement of their electrical characteristics were carried with high frequency 3D structure simulator. Quarter wave short stub surge arrestors for IMT-2000 were fabricated with their final design and then the measurement of electrical characteristics and the lightning test were executed. As a results of measurement, we obtained below 1.05 of VSWR, -0.035 dB of insertion loss, -150 dBc of intermodulation and 7∼ll V of residual voltage.

  • PDF

Optimization of the anti-snow performance of a high-speed train based on passive flow control

  • Gao, Guangjun;Tian, Zhen;Wang, Jiabin;Zhang, Yan;Su, Xinchao;Zhang, Jie
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.325-338
    • /
    • 2020
  • In this paper, the improvement of the anti-snow performance of a high-speed train (HST) is studied using the unsteady Reynolds-Averaged Navier-Stokes simulations (URANS) coupled with the Discrete Phase Model (DPM). The influences of the proposed flow control scheme on the velocity distribution of the airflow and snow particles, snow concentration level and accumulated mass in the bogie cavities are analyzed. The results show that the front anti-snow structures can effectively deflect downward the airflow and snow particles at the entrance of the cavities and alleviate the strong impact on the bogie bottom, thereby decrease the local accumulated snow. The rotational rear plates with the deflecting angle of 45° are found to present well deflecting effect on the particles' trajectories and force more snow to flow out of the cavities, and thus significantly reduce the accretion distribution on the bogie top. Furthermore, running speeds of HST are shown to have a great effect on the snow-resistance capability of the flow control scheme. The proposed flow control scheme achieves more snow reduction for HST at higher train's running speed in the cold regions.

Performance Analysis of Integral Receiver/Dryer Condenser for Automobile (자동차용 리시버/건조기 일체형 응축기의 성능해석)

  • Won, Sung-Pil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2007
  • The important problems from the point of view of preventing global warming are to save the power consumption of automotive air-conditioning systems and reduce the refrigerant amount filled. To achieve such requirements, integral receiver/dryer (R/D) condensers were developed recently. Typical integral R/D condensers have extra headers that play the role of R/D. Except an extra header and somewhat complex tube array resulting from the extra header, the most integral R/D condensers have almost the same specification that tube has multi channels, fin has louvers, flow in tube is parallel, etc. When integral condensers are applied, it is known that the refrigerating effect increases, resulting from the increase of subcooling degree in condenser, and the refrigerant amount used saves. In spite of several merits, integral condensers have not been applied a lot. That is why there is an uncertainty in performance, using integral condensers. The objective of this study is to theoretically optimize the tube array in an integral R/D condenser that is really being applied to some vehicles. The tube array has a great effect on the performance of the integral condenser as well as common ones. Through computer simulation, we could see that the tube array, 14-6-3-5-3-4, in the same condenser was the best, comparing heat release rate, pressure drop, etc. to the real array, 17-5-3-3-2-5. It should be noted that the optimization is based on the condenser performance only.

A Study on the Optimum Design of a Facade with Shading-type BIPV in Office Building (차양형 BIPV가 적용된 사무소 건물의 외피 최적 설계에 관한 연구)

  • Park, Se-Hyeon;Kang, Jun-Gu;Bang, Ah-Young;Kim, Jun-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Zero energy building is a self sufficient building that minimizes energy consumption through passive elements such as insulation, high performance window system and installing of high efficiency HVAC system and uses renewable energy sources. The Korea Government has been strengthening the building energy efficiency standard and code for zero energy building. The building energy performance is determined by the performance of building envelope. Therefore it is important to optimize facade design such as insulation, window properties and shading, that affect the heating and cooling loads. In particular, shading devices are necessary to reduce the cooling load in summer season. Meanwhile, BIPV shading system functions as a renewable energy technology applied in solar control facade system to reduce cooling load and produce electricity simultaneously. Therefore, when installing the BIPV shading system, the length of shadings and angle that affect the electricity production must be considered. This study focused on the facade design applied with BIPV shading system for maximizing energy saving of the selected standard building. The impact of changing insulation on roof and walls, window properties and length of BIPV shading device on energy performance of the building were investigated. In conclusion, energy consumption and electricity production were analyzed based on building energy simulations using energyplus 8.1 building simulation program and jEPlus+EA optimization tool.

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Virtual Network Mapping Algorithm for Minimizing Piecewise Linear Cost Function (Piecewise Linear 비용함수의 최소화를 위한 가상 네트워크 매핑 알고리즘)

  • Pyoung, Chan-kyu;Baek, Seung-jun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.672-677
    • /
    • 2016
  • Development of Internet has been successfully inspired with extensive deployment of the network technology and application. However, increases in Internet usage had caused a lot of traffic overload in these days. Thus, we need a continuous research and development on the network virtualization for effective resource allocation. In this paper, we propose a minimal cost virtual network mapping algorithm using Piecewise Linear Cost Function. We exploited an algorithm with Linear Programming and D-VINE for node mapping, and Shortest Path Algorithm based on linear programming solution is used for link mapping. In this way, we compared and analyzed the average cost for arrival rate of VN request with linear and tree structure. Simulation results show that the average cost of our algorithm shows better efficiency than ViNEyard.

A Novel Cell Selection Technique Based on Game Theory for Femtocell System Resource Optimization (펨토셀시스템 자원 최적화를 위한 게임이론 기반 기지국 선택 기법)

  • Jang, Jeong-Gyu;Sohn, Insoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.11
    • /
    • pp.652-659
    • /
    • 2014
  • In this paper, we propose an access point selection method for mobile users in LTE-femtocell system. In wireless communication system, users want to receive good data service. In LTE-femtocell system, if users move a little, users can experience different data service. The proposed access point selection method help that if users move a little, users obtain the high capacity and that user selects access point that other user have not selected much and so obtains higher data service. We simulated in order to prove performance of the proposed access point selection metod. Simulation results show that in a situation that users are concentrated in order to obtain better data service users are seen scattered look. As a result, we confirm that the proposed access point selection method provides good data service to users.