• Title/Summary/Keyword: Simulation of Water Quality

Search Result 607, Processing Time 0.023 seconds

Application of AGNPS Water Quality Computer Simulation Model to a Cattle Grazing Pasture

  • Jeon, Woo-Jeong;Parajuli, P.;Yoo, K.-H.
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.83-93
    • /
    • 2003
  • This research compared the observed and model predicted results that include; runoff, sediment yield, and nutrient losses from a 2.71 ha cattle grazing pasture field in North Alabama. Application of water quality computer simulation models can inexpensively and quickly assess the impact of pasture management practices on water quality. AGNPS single storm based model was applied to the three pasture species; Bermudagrass, fescue, and Ryegrass. While comparing model predicted results with observed data, it showed that model can reasonably predict the runoff, sediment yield and nutrient losses from the watershed. Over-prediction and under-prediction by the model occurred during very high and low rainfall events, respectively. The study concluded that AGNPS model can be reasonably applied to assess the impacts of pasture management practices and chicken litter application on water quality.

INTEGRATED WATER RESOURCES AND QUALITY MANAGEMENT SYSTEM USING GIS/RS TECHNOLOGIES

  • Shim, Kyu-Cheoul;Shim, Soon-Bo;Lee, Yo-Sang
    • Water Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.85-92
    • /
    • 2002
  • There has been continuous efforts to manage water resources for the required water quality criterion at river channel in Korea. However, we could obtain the partial improvement only for the point sources such as, waste waters from urban and factory site through the water quality management. Therefore, it is strongly needed that the best management practice throughout the river basin fur water quality management including non-point sources pollutant loads. This problem should be resolved by recognizing the non-point sources pollutant loads from the upstream river basin to the outlet of the basin depends on the landuse and soil type characteristics of the river basin using the computer simulation by a distributed model based on the detailed investigation and application of Geographic Information System (GIS). The purpose of this study is consisted of the three major distributions, which are the investigation of spread non-point sources pollutants throughout the river basin, development of the base maps to represent and interpret the input and outputs of the distributed simulation model, and prediction of non-point sources pollutant loads at the outlet of a up-stream river basin using Agricultural Non-Point Sources Model (AGNPS). For the validation purpose, the Seom-Jin River basin was selected with two flood events in 1998. The results of this application showed that the use of combined a distributed model and an application of GIS was very effective fur the best water resources and quality management practice throughout the river basin

  • PDF

Water Quality Prediction of the Miho Stream Using GIS (GIS를 이용한 미호천의 장래수질예측)

  • Noh, Jun-Woo;Lee, Sang-Jin;Lee, Sang-Uk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • This study conducted water quality projection of year 2010 in Miho stream of the Geum river basin by using GIS. Pollutant load data of corresponding tributary of the Miho stream is estimated based on the pollutant load of TMDL zone to simulate water quality of the Miho stream for BOD, TN, and TP. The pollutant load of the urban area such as Bochung and Musim stream basin is relatively high and the wastewater treatment plant of Chunju city directly affects the entire water quality of the target area. As a result, simulation result reveals that water treatment facility needs more refined treatment process for efficient water quality management. Also, to meet the target water quality of the Miho stream water quality simulation estimates the additional dilution flow by increasing irrigation water supplied from the Daechung dam through the Musim stream.

  • PDF

A Study on Mulwang Reservoir Water Quality Improvement Effect Using Watershed-Reservoir Integrated Prediction (유역-호소 통합수질예측 기법을 이용한 물왕저수지 수질개선효과 분석)

  • Oh, Heesang;Rhee, Han-Pil
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.3
    • /
    • pp.51-62
    • /
    • 2017
  • Since living environment has improved, waterfront space using and clear water demand have increased. Ministry of Environment (ME) designated polluted reservoir (worse than 4th grade) as a priority management reservoir to improve water quality (better than 3rd grade) accordingly. Minstry of Agriculture, Food and Rural Affairs (MAFRA) aims reservoir water quality 4th not 3rd grade. And water quality of agricultural reservoirs was not a great interest. For this reason, there are very few water quality monitoring data. However after designating as a priority management reservoir, reservoir manager should start water quality and flow monitoring of reservoirs and inflow streams. This process makes it possible setting complex model to accurate prediction of reservoir water quality and volume. Mulwang reservoir designated as a priority management reservoir in September 2014. In this study, BASINS/WinHSPF and EFDC-WASP were used to predict effect of water quality improvement countermeasures in Mulwang reservoir. To improve water quality of Mulwang reservoir, Siheung-si and Korea Rural Community Corporation (KRCC) established water quality improvement countermeasures. However result of simulation adapting these countermeasures cannot achieve 3rd grade. So 4 additional scenarios were adapted and the result satisfied 3rd grade. This study could help to establish water quality improvement countermeasure by using complex modeling.

Calculation of Pollutant Loads and Simulation of Water Quality in Juam Lake Watershed using GIS (GIS를 이용한 주암호 유역의 오염부하량 산정 및 수질모의)

  • Kim, Chul;Kim, Souk-Gyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.3
    • /
    • pp.87-98
    • /
    • 2002
  • Point & nonpoint source pollutant loads were calculated in Juam lake watershed using GIS, and water quality was simulated using water quality model. Point source pollutant loads were estimated using the unit pollutant loads presented by the Ministry of Environment(MOE, 1998). Nonpoint source pollutant loads were estimated using the value of the direct runoff multiplied by expected mean concentration. The direct runoff was calculated using SCS curve number method. Water quality simulation was conducted using WASP model(2001) developed by U.S. EPA. In order to apply the model, Juam lake watershed was divided into 44 subbasins according to slope, elevation, soil type, landuse and precipitation. Then the model was applied to one subbasin. Simulation results were compared to observed values and the result should good agreement with each other.

  • PDF

The Effect of Current and Temperature of a Reservoir by the Simulation of Dam Outflow (댐 방류조건에 따른 저수지 유속과 수온 영향)

  • Yu, Soon-ju;Ha, Sung-ryong;Jung, Dong-il
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1060-1067
    • /
    • 2006
  • Water quality in the Daecheong reservoir has been deteriorated by algal bloom due to nutrient supply from the upstream of the Daecheong reservoir after heavy rainfall. Algal bloom is propagated from eutrophicated tributary into the main body of the reservoir according to the hydrological conditions. This study is aimed to estimate the water current and temperature effect by the simulation of dam spill flow control using water quality model, CE-QUAL-W2 in 2003. Water current was resulted in nutrient transport from upstream of main reservoir and nutrients were delivered up to downstream by fast water velocity. Algal blooms occurred in stagnate zone of reservoir downstream as the current of downstream was retarded according to dam outflow control. Consequently water balance in stagnate zone triggered a rise of water temperature in summer. It affected algal bloom in the embayment of the reservoir. The simulation result by outflow control scenarios showed that spill flow augmentation induced in water body instability of stagnate zone so that water temperature declined. It could be suggested that outflow control minimize algal bloom in the downstream in the flooding season as long as water elevation level is maintained properly.

Behavior of Water Quality in Freshwater Lake of Tide Reclaimed Area Using SWMM and WASP5 Models (SWMM과 WASP5모형을 이용한 간척지 담수호의 수질거동 특성 조사)

  • 김선주;김성준;이석호;이준우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.148-160
    • /
    • 2002
  • Lake water quality assessment information is useful to anyone involved in lake management, from lakeshore owners to lake associations. 11 provides lake water quality, which can improve how to manage lake resources and how to measure current conditions. It also provides a knowledge base that can be used to protect and restore lakes. SWMM was applied to simulate the discharge and pollutant loads from Boryeong watershed, and WASP5 was applied to analyze the changes of water quality in Boryeong freshwater lake. In each model, the most suitable parameters were calculated through sensitive analysis and some parameters used default data. Simulated in SWMM and measured discharge showed the accuracy of 88.6%. T-N and T-P exceeds the criteria in the simulation of water quality in Boryeong freshwater lake, and control of pollutant loads in the main stream showed the most effective way. Integrated water quality management system was developed to give convenience in the operation of SWMM and WASP5 and data acquisition.

ESTIMATION OF DAM DISCHARGE FOR THE DOWN STREAM WATER QUALITY

  • Ha, Jin-Kyu;Hong, Il-Pyo
    • Water for future
    • /
    • v.35 no.5
    • /
    • pp.51-59
    • /
    • 2002
  • In recent years the human impact on the environment becomes increasing lift threatening, calls for the better management of resources. In field of water quality of river flow, the best way to conserve water quality is specific efforts to control the pollutant loadings and treat the loadings in the basin to reduce the discharge of pollutant loadings to river. But in general the water quality influenced by the dam discharge. Especially in dry season, it is more dominant way to improve the water quality which contaminated with the pollutant loadings from the basin. The dam discharge amounts of the 2 dams in the Keum River that maintain the down stream water quality were estimated for the year of 1999, 2001, 2006, 2011, in case of irrigation and non-irrigation seasons. The pollutant loadings for the basin are estimated with the planning of treatment plants construction schedule for every sub-basins. The river flow rates were considered low flow as 2.33 year low flow and 10 year low flow. The QUAL2E model was used as a tool of simulation.

  • PDF

Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model (1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의)

  • Noh, Joonwoo;Kim, Sang-Ho;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.

Establishment of Target Water Quality for TOC of Total Water Load Management System (오염총량관리제도의 TOC 목표수질 설정 방안)

  • Kim, Yong Sam;Lee, Eun Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.520-538
    • /
    • 2019
  • In this study, it was proposed that a method of setting the target water quality for TOC using the watershed model and the load duration curves to manage non-biodegradable organics in the total water load management system. To simulate runoff and water quality of the watershed, the HSPF model is used which is appropriate for urban and rural areas. Additionally, the load duration curve is used to reflect the variable water quality correlated with various river flow rates in preparing the TMDL plans in the U.S. First, the model was constructed by inputting the loads calculated from the pollutant sources in 2015. After the calibration and verification process, the water quality by flow conditions was analyzed from the BOD and TOC simulation results. When the BOD achieved the target water quality by inputting the target year loads for 2020, the median and average values of TOC were proposed for the target water quality. The provisional method of TOC target water quality for the management of non-biodegradable organics, which is one of the challenges of the total water load management system, was considered. In the future, it is expected to be used as basic data for the conversion of BOD into TOC in the total water load management system.