• Title/Summary/Keyword: Simulation modeling and analysis

Search Result 2,494, Processing Time 0.037 seconds

Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile (차체 강성해석을 위한 구조용 접착제 해석모델링 연구)

  • Seo, Seong-Hoon;Joo, Jae-Kap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF

COMBINING KNOWLEDGE-PROCESSING AND SIMULATION TECHNIQUES FOR SYSTEMS MODELING

  • Lehmann, Axel;Koster, Andreas
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.3-8
    • /
    • 2001
  • Regarding current rapid innovations and applications of information and telecommunication technologies as well as economical requirements, modeling and simulation (M&S) plays an increasingly important role for the planning, development and operation of high-tech products and systems. M&S has to seen as a key technology for multi-facetted analysis of complex systems during their life-cycles. For reasons as accuracy, credibility and cost-effectiveness, the selection of adequate and effective M&S techniques and tools is of significant importance. Regarding these aspects, this paper summarizes the basic methodological modeling approach for effective product and system modeling. In addition, besides a classification of different basic architectures and taxonomies combining knowledge-processing and simulation techniques, the paper describes some practical implementations and experiences.

  • PDF

A simulation for the analysis of the evasive capability of submarine against a torpedo using DEVS modeling (DEVS 기반 모델링을 적용한 잠수함의 어뢰회피 성능 분석 시뮬레이션)

  • Kang Jung-Ho;Lee Sung-Jun;Cha Ju-Hwan;Yoo Seong-Jin;Lee Hyo-Kwang;Lee Kyu-Yeul;Kim Tae-Wan;Ko Yong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.2
    • /
    • pp.57-71
    • /
    • 2005
  • A simulation for the analysis of the evasive capability of a conventional costal submarine against a light Anti-Submarine Warfare (ASW) torpedo has been studied. The Torpedo, Submarine Controller, Devoy, and Jammer models of this simulation are analysised and designed using Unified Modeling Language (UML) and in addition they are modeled Discrete Event System Specification (DEVS). We examine maximum speed, acceleration, countermeasure systems capabilities of a submarine, and sonar range of a torpedo as the factors which affect the evasive capability of the submarine. This paper shows the relationships between those various factors and the submarine's evasive capability as the outcome of the simulation. The simulation models can be applied for simulation based acquisition (SBA) of a submarine system.

  • PDF

Crack Analysis of Piezoelectric Material Considering Bounded Uncertain Material Properties

  • Kim, Tae-Uk;Shin, Jeong-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • Piezoelectric materials are widely used to construct smart or adaptive structures. Although extensive efforts have been devoted to the analysis of piezoelectric materials in recent years, most researches have been conducted by assuming that the material properties are fixed and have no uncertainties. Intrinsically, material properties have a certain amount of scatter and such uncertainties can affect the performance of component. In this paper, the convex modeling is used to consider such uncertainties in calculating the crack extension force of piezoelectric material and the results are compared with the one obtained via the Monte Carlo simulation. Numerical results show that crack extension forces increase when uncertainties considered, which indicates that such uncertainties should not be ignored for reliable lifetime prediction. Also, the results obtained by the convex modeling and the Monte Carlo simulation show good agreement, which demonstrates the effectiveness of the convex modeling.

Constructive Simulation and Experimentation for Supporting Light Weight Torpedo Operational Tactics Study (경어뢰 운용전술연구지원을 위한 구성시뮬레이션 및 모의실험)

  • Lee, Sim Yong;Go, Seung Ryeol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.769-778
    • /
    • 2016
  • Technical approach on the modeling, simulation and experimentation methods, which are applied for developing a constructive simulation and engagement experimentation software for supporting light weight torpedo operational tactics study, is introduced. Conceptual modeling for the weapon engagement and simulation entities, mathematical models for the simulation elements, approach for the design of experimentations are described, and screen shots of the software are also presented as some example results of experimentation and analysis. It is found that the simulation and experimentation results are useful to support and fulfill the mission needs and requests. As a consequence, the technical approach is rated to be appropriate to accomplish the dedicated purpose of the simulation and experiments.

A Study for Prevention of Musculoskeletal Disorders Using Digital Human Simulation in the Shipbuilding Industry (Digital Human Simulation을 이용한 근골격계질환 예방에 관한 연구 -조선업을 대상으로-)

  • Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.81-87
    • /
    • 2007
  • In this study digital human models of ship construction tasks using modeling & simulation were constructed and human models' activities through human activity analysis were evaluated. Human Factors experts analyzed the actual workers' tasks using the same technique used in human activity analysis at the same time. The main objective of this study is to check a possibility of applying digital human modeling technique to ship construction tasks that are mostly non-standardized(not uniformed) whereas most applications of digital human modeling technique have been applied to standardized tasks. We evaluated postures of both real workers and digital humans by RULA. It turned out that the final scores of RULA evaluation on real workers are the same as the RULA scores for digital humans. However, there were differences of RULA detail scores between real workers and digital humans in the several processes related with the wrist twist and deviations. Those differences are considered to be resulted from the error in the on-site measuring worker's body dimension which could be reduced by accurate tools to correct data for body dimension and digital real drawings for facilities. The results showed possibility of application of digital human modeling and ergonomic analysis on informal work operations as well as formal operations in the shipbuilding industry.

Business Process Simulation Modeling and Analysis Based on Role-Based Modeling Concept (Role 개념에 근거한 비즈니스 프로세스 시뮬레이션 모형 구축 및 분석)

  • Cho, Yoon-Ho;Kim, Jae-Kyeong;Kim, Soung-Hie
    • Asia pacific journal of information systems
    • /
    • v.8 no.2
    • /
    • pp.69-83
    • /
    • 1998
  • Some simulation tools have been developed to support business process reengineering. These tools can be used to not only analyze an as-is model of the existing process but also assess the potential value and feasibility of to-be models. But most of them are restricted to analyzing and redesign of the workflow only. Little attention is paid to the organization of people and their roles. This paper Presents a new methodology for business process simulation modeling and analysis. The methodology is based on the concepts of roles and customer-supplier chains. So the proposed methodology allows for tracking people and their roles affected by reengineering the business process. It enables one to analyze and evaluate not only workflow, but roles that are part of the flow. This paper developed a simulator to systematically construct simulation models and conduct simulations easily and efficiently. A case study is also presented as an illustrative example.

  • PDF

Modeling and Simulation Analysis of Grid-Connected Photovoltaic Generation System in terms of Dynamic behavior (계통연계형 태양광발전시스템의 동특성 모델링 및 모의해석)

  • Kim, Eung-Sang;Kim, Seul-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.127-131
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMIDC. an industry standard simulation tool for studying the transient behavior of electric power system and apparatus. is used to conduct all aspects of model implementation and to carry out extensive simulation study. An equivalent circuit model of a solar cell has been used for modeling solar array. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed

  • PDF

Comparison Results of Photovoltaic Module Performance using Simulation Model (해석모델을 이용한 태양광모듈의 성능결과 비교분석)

  • So, Jung-Hun;Yu, Byung-Gyu;Hwang, Hye-Mi;Yu, Gwon-Jong
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • The modeling of PV (Photovoltaic) module is useful to perform detailed analysis of PV system performance for changing meteorological conditions, verify actual rated power of PV system sizing and determine the optimal design of PV system and components. This paper indicates a modeling approach of PV module performance in terms of meteorological conditions and identifies validity of this modeling method by comparing measured with simulated value of various PV modules using simulation model.

PSCAD/EMTDC Based Modeling and Simulation Analysis of a Grid-Connected Photovoltaic Generation System (PSCAD/EMTDC를 미용한 계통연계형 태양광발전시스템의 모델링 및 모의 해석)

  • Jeon Jin-Hong;Kim Eung-Sang;Kim Seul-Ki
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.107-116
    • /
    • 2005
  • The paper addresses modeling and analysis of a grid-connected photovoltaic generation system (PV system). PSCAD/EMTDC, an industry standard simulation tool for studying the transient behavior of electric power system and apparatus, is used to conduct all aspects of model implementation and to carry out extensive simulation study. This paper is aimed at sharing with the PSCAD/EMTDC user community our user-defined model for PV system applications, which is not yet available as a standard model within PSCAD/EMTDC. An equivalent circuit model of a solar cell has been used for modeling solar array. A series of parameters required for array modeling have been estimated from general specification data of a solar module. A PWM voltage source inverter (VSI) and its current control scheme have been implemented. A maximum power point tracking (MPPT) technique is employed for drawing the maximum available energy from the PV array. Comprehensive simulation results are presented to examine PV array behaviors and PV system control performance in response to irradiation changes. In addition, dynamic responses of PV array and system to network fault conditions are simulated and analysed.