• Title/Summary/Keyword: Simulation model architecture

Search Result 1,042, Processing Time 0.027 seconds

Development of Underwater Hull Search Time Prediction Model with Discrete Event Simulation (이산사건 시뮬레이션을 이용한 수중 선체 탐색 시간 예측 모델 개발)

  • Joopil Lee;Seung-Ho Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.152-160
    • /
    • 2024
  • In the event of a maritime accident, search plans have traditionally been planned using experiential methods. However, these approaches cannot guarantee safety when the scale of a maritime accident increases. Therefore, this study proposes a model utilizing discrete event simulation (DES) to predict the diving time for compartment searches of a ship located on the seabed. The discrete event simulation model was created by applying the DEVS formalism. The M/V Sewol sinking was used as an example to simulate how to effectively navigate compartments of different sizes. The simulation results showed the optimal dive time with the number of decompression chambers needed to navigate the compartment as a variable. Based on this, we propose a methodology for efficient navigation planning while ensuring diver safety.

A Study on Discrete-Continuous Modeling Methodology for Supply Chain Simulation (공급사슬시뮬레이션을 위한 이산-연속 모델링 방법에 관한 연구)

  • 김서진;이영해
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.142-149
    • /
    • 2000
  • Most of supply chain simulation models have been developed on the basis of discrete-event simulation. Since supply chain systems are neither completely discrete nor continuous, the need of constructing a model with aspects of both discrete-event simulation and continuous is provoked, resulting in a combined discrete-continuous simulation. Continuous simulation concerns the modeling over time of a system by a representation in which the state variables change continuously with respect to time. In this paper, an architecture of combined modeling for supply chain simulation is proposed, which presents the equation of continuous part in supply chain and how these equations are used supply chain simulation models. A simple supply chain model is demonstrated the possibility and the capability of this approach.

  • PDF

Large-Eddy Simulation of Turbulent Channel Flow using a Viscous Numerical Wave Tank Simulation Technique (점성 수치파랑수조 구축을 위한 LES 기술의 평판간 난류유동에의 적용)

  • Park, Jong-Chun;Kang, Dae-Hwan;Kim, Bang-Eun;Yoon, Hyeon-Sik;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.204-212
    • /
    • 2003
  • As the first step to investigate the nonlinear interactions between turbulence and marine structures inside a viscous NWT, a LES technique was applied to the turbulent channel flow for $Re_{T}=150$, in this paper. The employed models were 4 types, such as the Smagorinsky model, the Dynamic SGS model, the Structure Function model and the Generalized Normal Stress model. The simulated data in time-series for the LESs were averaged in both time and space and performed statistical analysis. And results of the LESs were compared with those of a DNS developed in the present study and two spectral methods by Yoon et al.(2003) & Kim et al.(1987). It seems to be quite difficult to evaluate their performances to the present problem, but is seen that the accuracy of LESs are still related to the number of grids(or fine grid size).

  • PDF

Maneuvering simulation of an X-plane submarine using computational fluid dynamics

  • Cho, Yong Jae;Seok, Woochan;Cheon, Ki-Hyeon;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.843-855
    • /
    • 2020
  • X-plane submarines show better maneuverability as they have much longer span of control plane than that of cross plane submarines. In this study, captive model tests were conducted to evaluate the maneuverability of an X-plane submarine using Computational Fluid Dynamics (CFD) and a mathematical maneuvering model. For CFD analysis, SNUFOAM, CFD software specialized in naval hydrodynamics based on the open-source toolkit, OpenFOAM, was applied. A generic submarine Joubert BB2 was selected as a test model, which was modified by Maritime Research Institute Netherlands (MARIN). Captive model tests including propeller open water, resistance, self-propulsion, static drift, horizontal planar motion mechanism and vertical planar motion mechanism tests were carried out to obtain maneuvering coefficients of the submarine. Maneuvering simulations for turning circle tests were performed using the maneuvering coefficients obtained from the captive model tests. The simulated trajectory showed good agreement with that of free running model tests. From the results, it was proved that CFD simulations can be applicable to obtain reliable maneuvering coefficients for X-plane submarines.

Development of Artificial Neural Network Model for Predicting the Optimal Setback Application of the Heating Systems (난방시스템 최적 셋백온도 적용시점 예측을 위한 인공신경망모델 개발)

  • Baik, Yong Kyu;Yoon, younju;Moon, Jin Woo
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.89-94
    • /
    • 2016
  • Purpose: This study aimed at developing an artificial neural network (ANN) model to predict the optimal start moment of the setback temperature during the normal occupied period of a building. Method: For achieving this objective, three major steps were conducted: the development of an initial ANN model, optimization of the initial model, and performance tests of the optimized model. The development and performance testing of the ANN model were conducted through numerical simulation methods using transient systems simulation (TRNSYS) and matrix laboratory (MATLAB) software. Result: The results analysis in the development and test processes revealed that the indoor temperature, outdoor temperature, and temperature difference from the setback temperature presented strong relationship with the optimal start moment of the setback temperature; thus, these variables were used as input neurons in the ANN model. The optimal values for the number of hidden layers, number of hidden neurons, learning rate, and moment were found to be 4, 9, 0.6, and 0.9, respectively, and these values were applied to the optimized ANN model. The optimized model proved its prediction accuracy with the very storing statistical correlation between the predicted values from the ANN model and the simulated values in the TRNSYS model. Thus, the optimized model showed its potential to be applied in the control algorithm.

A Transportation Movement Management Prototype Model Based on the High Level Architecture (상위체계구조에 근거한 수송이동관리 시제 모형)

  • 이상헌;이영구
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.2
    • /
    • pp.31-43
    • /
    • 2002
  • The High Level Architecture(HLA) for modeling and simulation was developed as means of facilitating interoperability among simulations and promoting reuse of simulations and their components. The purpose of this paper is to provide a summary of the latest release of the HLA concept, supporting utilities and develop the prototyped Transportation Movement Management(TMM) federation. To obtain this goal, the Federation Development and Execution Process(FEDEP) is being applied to development of TMM federation will consist of three federates. This paper outlines the rationale of our approach, describes the application of the FEDEP in the development of the federation, and provides the current status of the federation development. The resulting federation shows complete interoperability among simulation components in the TMM federation and satisfactory simulation outputs. We present a description and process of the federation and the lessons learned with the process utilization for federation development and execution. Furthermore, the issues in establishing a HLA based federation across multiple legacy simulations are discussed.

  • PDF

A Study on the Resistance Performance of Korean High-Speed Small Coastal Fishing Boat (한국 고속 소형 연안어선의 저항성능 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Park, Ae-Seon;Ha, Yoon-Jin;Park, Cheong-Kyu;Choi, Young-Chan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.2
    • /
    • pp.158-164
    • /
    • 2011
  • The study on the improvement of resistance performance is very important for coastal fishing boats in Korea, because the prices of fuel oil are gradually risen and the demand of high-speed fishing boats is increased lately. This study is concerned with the improvement of the resistance performance for Korean high-speed small coastal fishing boats. A semi-planing hull form of Korean small coastal fishing boat is selected in the role of initial hull. From the modification of the hull form parameters and the local characteristics of the hull form, the improvement of the resistance performance is achieved. The resistance performances of the initial and the modified hull forms are estimated by using a numerical simulation method. Also, ship model tests are carried out in ship model basin.

Implementation of AHB1-AHB2 Multi-Bus Architecture Using Memory Selector (메모리 셀렉터를 이용한 AHB1-AHB2 다중버스 아키텍처 구조 구현)

  • Lee, Keun-Hwan;Lee, Kook-Pyo;Yoon, Yung-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.527-528
    • /
    • 2008
  • In this paper, several cases of multi-shared bus architecture are discussed and in order to decrease the bridge latency, the architecture introducing a memory decoder is proposed. Finally, a LCD controller using DMA master is integrated in this bus architecture that is verified due to RTL simulation and FPGA board test. DMA, LCD line buffer and SDRAM controller are normally operated in the timing simulation using ModelSim tool, and the LCD image is confirmed in the real FPGA board containing LCD panel.

  • PDF

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

Virtual FMS Architecture for FMS Prototyping

  • Park, Byoungkyu;Park, Beumchul;Donghwan Hwang
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.174-179
    • /
    • 2000
  • Proposed in the paper is a V-FMS (Virtual Flexible Manufacturing System) model to be used as a prototyping tool for FMS design. The proposed V-FMS framework follows an object-oriented modeling (OOM) paradigm and is based on a set of user requirements for FMS prototyping. The V-FMS model consists of four types of object: virtual device, transfer handler, state manager and flow controller. A virtual device model, which corresponds to a static model in OOM, consists of two parts, shell and core, for reusability. A transfer handler corresponds to a functional model of OOM and it stores low level device commands required to perform job flow operations between giving and taking devices. The state manager and the flow controller constitute a dynamic model of OOM. The proposed V-FMS model has been implemented for a couple of linear type FMS-lines

  • PDF