• Title/Summary/Keyword: Simulation data

Search Result 14,404, Processing Time 0.035 seconds

Validation Technique of Trace-Driven Simulation Model Using Weighted F-measure (가중 F 척도를 이용한 Trace-Driven 시뮬레이션 모델의 검증 방법)

  • HwangBo, Hoon;Cheon, Hyeon-Jae;Lee, Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.185-195
    • /
    • 2009
  • As most systems get more complicated, system analysis using simulation has been taken notice of. One of the core parts of simulation analysis is validation of a simulation model, and we can identify how well the simulation model represents the real system with this validation process. The difference between input data of two systems has an effect on the comparison between a simulation model and a real system at validation stage, and the result with such difference is not enough to ensure high credibility of the model. Accordingly, in this paper, we construct a model based on Trace-driven simulation which uses identical input data with the real system. On the other hand, to validate a model by each class, not by an unique statistic, we validate the model using a metric transformed from F-measure which estimates performance of a classifier in data mining field. Finally, this procedure enables precise validation process of a model, and it helps modification by offering feedback at the validation phase.

Validation Method of Simulation Model Using Wavelet Transform (웨이블릿 변환을 이용한 시뮬레이션 모델 검증 방법)

  • Shin, Sang-Mi;Kim, Youn-Jin;Lee, Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.127-135
    • /
    • 2010
  • The validation of a simulation model is a key to demonstrate that the simulation model is reliable. However, among various validation methods have been introduced, it is very poor to research the specific techniques for the time series data. Therefore, this paper suggests the methodology to verify the simulation using the time series data by Wavelet Transform, Power Spectrum and Coherence. This method performs 2 steps as followed. Firstly, we get spectrum using the Wavelet transform available for non-periodic signal separation. Secondly, we compare 2 patterns of output data from simulation model and actual system by Coherence Analysis. As a result of comparing it with other validation techniques, the suggested way can judge simulation model accuracy more clearly. By this way, we can make it possible to perform the simulation validation test under various situations using detailed sectional validation method, which has been impossible using a single statistics for the whole model.

Development of dynamics simulation model for 3-point hitch of agricultural tractor during plow tillage

  • Mo A Son;Seung Yun Baek;Seung Min Baek;Hyeon Ho Jeon;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.937-948
    • /
    • 2022
  • Agricultural operations are performed in uneven environments by attaching an implement on the 3-point hitch of a tractor. A high load is thus placed on the 3-point hitch, and fatigue and failure of the hitch may occur during agricultural operations. In this study, a dynamic simulation model was developed to predict the load occurring on the eyebolt of a 3-point hitch, which is the main damaged component. The simulation model was developed and validated using agricultural data as simulation input and validation data. The dynamics model was developed using the specifications of a 78 kW class tractor. A measurement system was constructed to measure the simulation input and validation data. The simulation model was validated using a traction load on an eye bolt, which was measured during plow tillage operation. The measurement results showed that the average traction load on the left and right lower link and the top link were 8,099.97, 4,943.06, and 636.11 N, respectively. The simulation results and the measured traction load on the left eyebolt were respectively 610.30 and 597.15 N. The simulation results and measured traction load on the left eyebolt were respectively 1,179.78, and 1,145.06 N. The error between the simulation and measurement data was roughly 2% on the left eyebolt and 3% on the right eyebolt.

A Preliminary Study for Simulation of Social Security Benefit (사회보장 급여의 시뮬레이션을 위한 시론적 연구)

  • Chu, Byung-Joo;Kim, Sung-Hoon;Jung, Sang-Gee;Kim, Kyung-Joon;Lee, In-Soo;Kim, Hyung-Jung
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.5
    • /
    • pp.256-264
    • /
    • 2018
  • This study performed statistical matching using population census microdata and financial panel data. It generated the national basic data for simulation including income and property. Using this data the basic old-age pension, which is one of the biggest benefits, simulation was performed by applying the micro simulation methodology. In addition, we verified the coherence of the analysis results by comparing simulation basic data and financial panel data, basic old-age pension pilot simulation analysis results and basic old&-age pension actual beneficiary data.

Estimation of Rock Mass rating(RMR) and Assessment of its Uncertainty using Conditional Simulations (조건부 모사 기법을 이용한 암반등급의 예측 및 불확실성 평가에 관한 연구)

  • Hong Chang-Woo;Jeon Seok-Won;Koo Chung-Mo
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.135-145
    • /
    • 2006
  • In this study, conditional simulation was conducted to estimate rock mass rating(RMR) in unsurveyed regions. Sequential Gaussian simulation(SGS) and sequential indicator simulation(SIS) were applied for estimating RMR from the bore hole logging data. The uncertainty of SGS and SIS was verified by sample cross validation. A subset composed of 5 bore hole logging data among the original 30 bore hole logging data was set aside as test data. The remainder was training data. The quality of SGS and SIS estimation on the testing data reflects how well it would perform in an unsupervised setting. SGS and SIS were useful stochastic methods to estimate the spatial distribution of rock mass classes correctly and assess the uncertainty of estimation quantitatively. The result of conditional simulation can offer useful information of rock mass classes such as RMR in unsurveyed regions.

Development of a method of the data generation with maintaining quantile of the sample data

  • Joohyung Lee;Young-Oh Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.244-244
    • /
    • 2023
  • Both the frequency and the magnitude of hydrometeorological extreme events such as severe floods and droughts are increasing. In order to prevent a damage from the climatic disaster, hydrological models are often simulated under various meteorological conditions. While performing the simulations, a synthetic data generated through time series models which maintains the key statistical characteristics of the sample data are widely applied. However, the synthetic data can easily maintains both the average and the variance of the sample data, but the quantile is not maintained well. In this study, we proposes a data generation method which maintains the quantile of the sample data well. The equations of the former maintenance of variance extension (MOVE) are expanded to maintain quantile rather than the average or the variance of the sample data. The equations are derived and the coefficients are determined based on the characteristics of the sample data that we aim to preserve. Monte Carlo simulation is utilized to assess the performance of the proposed data generation method. A time series data (data length of 500) is regarded as the sample data and selected randomly from the sample data to create the data set (data length of 30) for simulation. Data length of the selected data set is expanded from 30 to 500 by using the proposed method. Then, the average, the variance, and the quantile difference between the sample data, and the expanded data are evaluated with relative root mean square error for each simulation. As a result of the simulation, each equation which is designed to maintain the characteristic of data performs well. Moreover, expanded data can preserve the quantile of sample data more precisely than that those expanded through the conventional time series model.

  • PDF

Visualization of Dynamic Simulation Data for Power System Stability Assessment

  • Song, Chong-Suk;Jang, Gil-Soo;Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.484-492
    • /
    • 2011
  • Power system analyses, which involve the handling of massive data volumes, necessitate the use of effective visualization methods to facilitate analysis and assist the user in obtaining a clear understanding of the present state of the system. This paper introduces an interface that compensates for the limitations of the visualization modules of dynamic security assessment tools, such as PSS/e and TSAT, for power system variables including generator rotor angle and frequency. The compensation is made possible through the automatic provision of dynamic simulation data in visualized and tabular form for better data intuition, thereby considerably reducing the redundant manual operation and time required for data analysis. The interface also determines whether the generators are stable through a generator instability algorithm that scans simulation data and checks for an increase in swing or divergence. The proposed visualization methods are applied to the dynamic simulation results for contingencies in the Korean Electric Power Corporation system, and have been tested by power system researchers to verify the effectiveness of the data visualization interface.

The Effects of Typhoon Initialization and Dropwindsonde Data Assimilation on Direct and Indirect Heavy Rainfall Simulation in WRF model

  • Lee, Ji-Woo
    • Journal of the Korean earth science society
    • /
    • v.36 no.5
    • /
    • pp.460-475
    • /
    • 2015
  • A number of heavy rainfall events on the Korean Peninsula are indirectly influenced by tropical cyclones (TCs) when they are located in southeastern China. In this study, a heavy rainfall case in the middle Korean region is selected to examine the influence of typhoon simulation performance on predictability of remote rainfall over Korea as well as direct rainfall over Taiwan. Four different numerical experiments are conducted using Weather Research and Forecasting (WRF) model, toggling on and off two different improvements on typhoon in the model initial condition (IC), which are TC bogussing initialization and dropwindsonde observation data assimilation (DA). The Geophysical Fluid Dynamics Laboratory TC initialization algorithm is implemented to generate the bogused vortex instead of the initial typhoon, while the airborne observation obtained from dropwindsonde is applied by WRF Three-dimensional variational data assimilation. Results show that use of both TC initialization and DA improves predictability of TC track as well as rainfall over Korea and Taiwan. Without any of IC improvement usage, the intensity of TC is underestimated during the simulation. Using TC initialization alone improves simulation of direct rainfall but not of indirect rainfall, while using DA alone has a negative impact on the TC track forecast. This study confirms that the well-suited TC simulation over southeastern China improves remote rainfall predictability over Korea as well as TC direct rainfall over Taiwan.

The study on the Analysis of Useful Daylight Illuminance in rural standard house model - By Dynamic Daylight Simulation Using Weather Data - (농어촌주택 표준설계의 유용조도 분석에 관한 연구 - 기상데이터 기반 동적 자연채광 시뮬레이션을 기반으로 -)

  • Yun, Young Il;Song, Jeong Suk;Lee, Hyo Won
    • KIEAE Journal
    • /
    • v.11 no.1
    • /
    • pp.47-55
    • /
    • 2011
  • Daylight is highly beneficial for improving the indoor environmental quality and reducing building energy consumption, daylighting applications are scarcely considered, especially during the Rural standard house models design process, because of lack of previous studies on elderly-light environment and complex simulation process. Therefore, daylighting process were performed using ECOTECT, which has various advantage such as easy user interface and simple simulation processes. Moreover, dynamic daylight simulation were performed using whether data. Static simulation are performed to compute static metrics such as daylight factor, whereas dynamic simulation are performed for dynamic metrics such as daylight autonomy and useful daylight illuminance using annual weather data On the basis of daylight autonomy and useful daylight illuminance analysis result, variations in annual daylight performances. A parametric and regression analysis of the window-to-wall ratio and visible transmittance showed that daylight factor, daylight autonomy increased with window-to-wall ratio and visible transmittance. It can be concluded that this new daylight criteria. useful daylight illuminance, will enable architect to obtain better fenestration design.