• Title/Summary/Keyword: Simulation based verification and validation

Search Result 55, Processing Time 0.021 seconds

DESIGN OF A FPGA BASED ABWR FEEDWATER CONTROLLER

  • Huang, Hsuanhan;Chou, Hwaipwu;Lin, Chaung
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • A feedwater controller targeted for an ABWR has been implemented using a modern field programmable gate array (FPGA), and verified using the full scope simulator at Taipower's Lungmen nuclear power station. The adopted control algorithm is a rule-based fuzzy logic. Point to point validation of the FPGA circuit board has been executed using a digital pattern generator. The simulation model of the simulator was employed for verification and validation of the controller design under various plant initial conditions. The transient response and the steady state tracking ability were evaluated and showed satisfactory results. The present work has demonstrated that the FPGA based approach incorporated with a rule-based fuzzy logic control algorithm is a flexible yet feasible approach for feedwater controller design in nuclear power plant applications.

An Optimized V&V Methodology to Improve Quality for Safety-Critical Software of Nuclear Power Plant (원전 안전-필수 소프트웨어의 품질향상을 위한 최적화된 확인 및 검증 방안)

  • Koo, Seo-Ryong;Yoo, Yeong-Jae
    • Journal of the Korea Society for Simulation
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2015
  • As the use of software is more wider in the safety-critical nuclear fields, so study to improve safety and quality of the software has been actively carried out for more than the past decade. In the nuclear power plant, nuclear man-machine interface systems (MMIS) performs the function of the brain and neural networks of human and consists of fully digitalized equipments. Therefore, errors in the software for nuclear MMIS may occur an abnormal operation of nuclear power plant, can result in economic loss due to the consequential trip of the nuclear power plant. Verification and validation (V&V) is a software-engineering discipline that helps to build quality into software, and the nuclear industry has been defined by laws and regulations to implement and adhere to a through verification and validation activities along the software lifecycle. V&V is a collection of analysis and testing activities across the full lifecycle and complements the efforts of other quality-engineering functions. This study propose a methodology based on V&V activities and related tool-chain to improve quality for software in the nuclear power plant. The optimized methodology consists of a document evaluation, requirement traceability, source code review, and software testing. The proposed methodology has been applied and approved to the real MMIS project for Shin-Hanul units 1&2.

Validation of MCS code for shielding calculation using SINBAD

  • Feng, XiaoYong;Zhang, Peng;Lee, Hyunsuk;Lee, Deokjung;Lee, Hyun Chul
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3429-3439
    • /
    • 2022
  • The MCS code is a computer code developed by the Ulsan National Institute of Science and Technology (UNIST) for simulation and calculation of nuclear reactor systems based on the Monte Carlo method. The code is currently used to solve two main types of reactor physics problems, namely, criticality problems and radiation shielding problems. In this paper, the radiation shielding capability of the MCS code is validated by simulating some selected SINBAD (Shielding Integral Benchmark Archive and Database) experiments. The whole validation was performed in two ways. Firstly, the functionality and computational rationality of the MCS code was verified by comparing the simulation results with those of MCNP code. Secondly, the validity and computational accuracy of the MCS code was confirmed by comparing the simulation results with the experimental results of SINBAD. The simulation results of the MCS code are highly consistent with the those of the MCNP code, and they are within the 2σ error bound of the experiment results. It shows that the calculation results of the MCS code are reliable when simulating the radiation shielding problems.

A Research on Tac-ELINT SW Development Method Using M&S System (M&S 시스템을 활용한 Tac-ELINT 지상운용 SW 개발 방안 연구)

  • Shin, Dong-Cho;Kwak, Hyun-Gyu;Lee, Kwang-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.1058-1066
    • /
    • 2011
  • This research paper on Tac-ELINT SW development method using M&S system describes the validation and verification methods of Tac-ELINT ground operating software development each stages, and the method of improving reusability of software using SBD(Simulation Based Design/Development) concept. In this project, We obtain the EW software SBD technologies and improved Tac-ELINT ground operating software through software crisis mitigation. This method and technology will expect to support a future EW system and any other various weapon software development.

Design and Development of an Advanced Real-Time Satellite Simulator

  • Kang, Ja-Young;Kim, Jae-Moung;Chung, Seon-Jong
    • ETRI Journal
    • /
    • v.17 no.3
    • /
    • pp.1-16
    • /
    • 1995
  • An advanced real-time satellite simulator (ARTSS) has been developed to support the ground operations activities of the ETRI satellite control system, such as testing of the system facilities, validation of flight control procedures, verification of satellite commands as well as training of the ground operators. The design of ARTSS is based on the top-down approach and makes use of a modular programming to ensure flexibility in modification and expansion of the system. Graphics-based monitoring and control facilities enhance the satellite simulation environment. The software spacecraft model in ARTSS simulates the characteristics of a geostationary communication satellite using a momentum bias three-axis stabilization control technique. The system can be also interfaced with a hardware payload subsystem such as Ku-band communication transponder to enhance the simulator capability. Therefore, ARTSS is a high fidelity satellite simulation tool that can be used on low-cost desk top computers. In this paper, we describe the design features, the simulation models and the real-time operating functions of the simulator.

  • PDF

A Study on the Method of Constructive Simulation Operation Analysis for Warfighting Experiment Supplied with the Validation Evaluation (타당성 평가가 보완된 모델 운용상의 전투실험 모의분석 절차 연구)

  • Park, Jin-Woo;Kim, Nung-Jin;Kang, Sung-Jin;Soo, Hyuk
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.77-87
    • /
    • 2010
  • Currently, our society has been changed from the industrial society to the information society. As the war progresses to Information Warfare, Network-Centric Warfare, Long-Range Precision Engagement and Robot Warfare, the military should advance to High-tech Scientific force. For this creation of the war potential, it is regarded as the warfighting experiment is a critical method. Surely it is rational that LVC(Live Virtual Constructive simulation) is desirable to make the warfighting experiment. But because it is limited by the cost, the time, the place and the resource, the constructive simulation(M&S : Modeling&Simulation) is a good tool to solve those problems. There are some studies about the evaluation process for developing the model, but it is unsatisfying in the process of the constructive simulations' operation. This study focuses on the way of constructive simulation operation, which is supplied with the evaluation process(VV&A : Verification Validation & Accreditation). We introduce the example of the rear area operation simulation for "appropriateness evaluation to the organization of logistic corps" by the AWAM(Army Weapon Analysis Model). This study presents the effective methods of the constructive simulations, which is based on the reliable evaluation process, so it will contribute to the warfighting experiments.

The VV&A Process Design for CMMS in consideration of Korean mission space characteristics (한국형 CMMS 개발 및 관리시스템의 VV&A 프로세스 설계)

  • Kim, Gyo-Seob;Lee, Jung-Man;Bae, Young-Min;Lee, Young-Hoon;Pyun, Jai-Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.4
    • /
    • pp.189-198
    • /
    • 2010
  • Conceptual Model of the Mission Spaces(CMMS) is a first abstraction model of the military real world and serves as a knowledge(mission spaces) reference models for development, interoperability and reusability of defense modeling and simulation(M&S) systems, by capturing basic information about entities involved in any mission and their key actions and interactions. Therefore, the completeness of CMMS is the key to success for the quality of M&S systems based on it. To improve quality and credibility of CMMS, the Verification, Validation and Accreditation(VV&A) processes of CMMS is very important. This paper briefly describes the K-CMMS(Korean Conceptual Model of Mission Space) and the VV&A process.

Design and control performance validation of HILS system based on MATLAB/Simulink (MATLAB/Simulink기반 HILS 환경 구축 및 제어 성능 검증)

  • Min-Woo Ham;Insu Paek
    • Journal of Wind Energy
    • /
    • v.15 no.1
    • /
    • pp.60-68
    • /
    • 2024
  • In this study, a hardware-in-the-loop simulation (HILS) environment was established using MATLAB/Simulink to simulate and verify the power performance of a wind turbine. The target wind turbine was selected as the NREL 5 MW model, and modeling was performed based on the disclosed specifications. The HILS environment consists of a PC equipped with a MATLAB/Simulink program, a programmable logic controller (PLC) for uploading and linking control algorithms, and data acquisition (DAQ) equipment to manage wind turbine data input and output. The operation of the HILS environment was carried out as a procedure of operation (PC) of the target wind turbine modeled based on MATLAB/Simulink, data acquisition (PLC) of control algorithms, control command calculation (PLC), and control command input (PC). The simulation was performed using the HILS environment under turbulent wind conditions and compared with the simulation results performed under the same conditions in the HILS environment using the commercial program Bladed for performance verification. From the comparison, it was found that the dynamic simulation results of the Bladed HILS and the MATLAB HILS were close in power performances and the errors in the average values of rotor rotation speed and power generation between the two simulations were about 0.44 % and 3.3 %, respectively.

Verification and Validation of Dynamic Clearance in Digital Mockup Using Engine Movement Roll Data (엔진 거동을 고려한 DMU(Digital Mockup)에서의 다이나믹 간격 검증)

  • Kim, Yong-Suk;Jang, Dong-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.56-61
    • /
    • 2010
  • This paper presents dynamic clearance verification considering engine movement for vehicle engine room package and validates through physical vehicle test. Traditionally, static clearance guide has been used for engine room package, but it's only 2-dimension criteria that results in requiring unnecessary space and it's not possible to conduct engine movement with real driving conditions. Thus, the dynamic DMU considers engine movement based on 28 load cases that are Roll Data analyzed by CAE for maximum engine movement and visualizes part-to-part dynamic clearance into virtual space. The dynamic DMU enables to develop compact engine room package without unnecessary space. The result of comparison between simulation and physical test has 0.892 correlation coefficient.

Simulation-based Design Validation and Alternatives Analysis of Release Process of Logistics Automation Warehouse (시뮬레이션을 활용한 물류 자동화 창고의 출고 프로세스 설계 검증 및 대안 분석)

  • Moon-Gi Jeong;JongPil Kim;JinSung Park;Kyung-Min Seo
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.75-91
    • /
    • 2023
  • As the business-to-customer (B2C) online market expands after the COVID-19 pandemic, the logistics industry has been constructing automated warehouses to handle multi-product, low-volume logistics. When constructing a logistics automation warehouse, it is crucial to validate that the facility's performance and operational logic are designed to meet the required throughput of the automated warehouse from the system design phase. This study proposes simulation-based validation and optimal alternatives for an H logistics automation warehouse in Iksan, Jeollabuk-do. Firstly, we focused on the box supply and packing processes, which are related to the release process, among the entire logistic processes. Then, we analyzed the potential bottlenecks in the target process and designed and implemented a discrete-event simulation model based on the analysis results. The simulation experiments showed that the facility parameters and operational logic identified in the system design phase did not satisfy the performance requirements of the entire automated warehouse. Additional experiments were conducted to suggest alternatives to meet the system performance requirements by changing the facility parameters and operational logic. We expect that the proposed study will be utilized in the future, not only in the system design phase but also in the system construction phase, for verification purposes to ensure that the construction proceeds according to the design.