• Title/Summary/Keyword: Simulation Training

Search Result 1,366, Processing Time 0.026 seconds

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Recognition and Request for Medical Direction by 119 Emergency Medical Technicians (119 구급대원들이 지각하는 의료지도의 필요성 인식과 요구도)

  • Park, Joo-Ho
    • The Korean Journal of Emergency Medical Services
    • /
    • v.15 no.3
    • /
    • pp.31-44
    • /
    • 2011
  • Purpose : The purpose of emergency medical services(EMS) is to save human lives and assure the completeness of the body in emergency situations. Those who have been qualified on medical practice to perform such treatment as there is the risk of human life and possibility of major physical and mental injuries that could result from the urgency of time and invasiveness inflicted upon the body. In the emergency medical activities, 119 emergency medical technicians mainly perform the task but they are not able to perform such task independently and they are mandatory to receive medical direction. The purpose of this study is to examine the recognition and request for medical direction by 119 emergency medical technicians in order to provide basic information on the development of medical direction program suitable to the characteristics of EMS as well as for the studies on EMS for the sake of efficient operation of pre-hospital EMS. Method : Questionnaire via e-mail was conducted during July 1-31, 2010 for 675 participants who are emergency medical technicians, nurses and other emergency crews in Gyeongbuk. The effective 171 responses were used for the final analysis. In regards to the emergency medical technicians' scope of responsibilities defined in Attached Form 14, Enforcement regulations of EMS, t-test analysis was conducted by using the means and standard deviation of the level of request for medical direction on the scope of responsibilities of Level 1 & Level 2 emergency medical technicians as the scale of medical direction request. The general characteristics, experience result, the reason for necessity, emergency medical technicians & medical director request level, medical direction method, the place of work of the medical director, feedback content and improvement plan request level were analyzed through frequency and percentage. The level of experience in medical direction and necessity were analyzed through ${\chi}^2$ test. Results : In regards to the medical direction experience per qualification, the experience was the highest with 53.3% for Level 1 emergency medical technicians and 80.3% responded that experience was helpful. As for the recognition on the necessity of medical direction, 71.3% responded as "necessary" and it turned out to be the highest of 76.9% in nurses. As for the reason for responding "necessary", the reason for reducing the risk and side-effects from EMS for patients was the largest(75.4%), and the reason of EMS delay due to the request of medical direction was the highest(71.4%) for the reason for responding "not necessary". In regards to the request level of the task scope of emergency medical technicians, injection of certain amount of solution during a state of shock was the highest($3.10{\pm}.96$) for Level 1 emergency rescuers, and the endotracheal intubation was the highest($3.12{\pm}1.03$) for nurses, and the sublingual administration of nitroglycerine(NTG) during chest pain was the highest($2.62{\pm}1.02$) for Level 2 emergency medical technicians, and regulation of heartbeat using AED was the highest($2.76{\pm}.99$) for other emergency crews. For the revitalization of medical direction, the improvement in the capability of EMS(78.9%) was requested from emergency crew, and the ability to evaluate the medical state of patient was the highest(80.1%) in the level of request for medical director. The prehospital and direct medical direction was the highest(60.8%) for medical direction method, and the emergency medical facility was the highest(52.0%) for the placement of medical director, and the evaluation of appropriateness of EMS was the highest(66.1%) for the feedback content, and the reinforcement of emergency crew(emergency medical technicians) personnel was the highest(69.0%) for the improvement plan. Conclusion : The medical direction is an important policy in the prehospital EMS activity because 119 emergency medical technicians agreed the necessity of medical direction and over 80% of those who experienced medical direction said it was helpful. In addition, the simulation training program using algorithm and case study through feedback are necessary in order to enhance the technical capability of ambulance teams on the item of professional EMS with high level of request in the task scope of emergency medical technicians, and recognition of medical direction is the essence of the EMS field. In regards to revitalizing medical direction, the improvement of the task performance capability of 119 emergency medical technicians and medical directors, reinforcement of emergency medical activity personnel, assurance of trust between emergency medical technicians and the emergency physician, and search for professional operation plan of medical direction center are needed to expand the direct medical direction method for possible treatment beforehand through the participation by medical director even at the step in which emergency situation report is received.

Study of Motion-induced Dose Error Caused by Irregular Tumor Motion in Helical Tomotherapy (나선형 토모테라피에서 불규칙적인 호흡으로 발생되는 움직임에 의한 선량 오차에 대한 연구)

  • Cho, Min-Seok;Kim, Tae-Ho;Kang, Seong-Hee;Kim, Dong-Su;Kim, Kyeong-Hyeon;Cheon, Geum Seong;Suh, Tae Suk
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.119-126
    • /
    • 2015
  • The purpose of this study is to analyze motion-induced dose error generated by each tumor motion parameters of irregular tumor motion in helical tomotherapy. To understand the effect of the irregular tumor motion, a simple analytical model was simulated. Moving cases that has tumor motion were divided into a slightly irregular tumor motion case, a large irregular tumor motion case and a patient case. The slightly irregular tumor motion case was simulated with a variability of 10% in the tumor motion parameters of amplitude (amplitude case), period (period case), and baseline (baseline case), while the large irregular tumor motion case was simulated with a variability of 40%. In the phase case, the initial phase of the tumor motion was divided into end inhale, mid exhale, end exhale, and mid inhale; the simulated dose profiles for each case were compared. The patient case was also investigated to verify the motion-induced dose error in 'clinical-like' conditions. According to the simulation process, the dose profile was calculated. The moving case was compared with the static case that has no tumor motion. In the amplitude, period, baseline cases, the results show that the motion-induced dose error in the large irregular tumor motion case was larger than that in the slightly irregular tumor motion case or regular tumor motion case. Because the offset effect was inversely proportion to irregularity of tumor motion, offset effect was smaller in the large irregular tumor motion case than the slightly irregular tumor motion case or regular tumor motion case. In the phase case, the larger dose discrepancy was observed in the irregular tumor motion case than regular tumor motion case. A larger motion-induced dose error was also observed in the patient case than in the regular tumor motion case. This study analyzed motion-induced dose error as a function of each tumor motion parameters of irregular tumor motion during helical tomotherapy. The analysis showed that variability control of irregular tumor motion is important. We believe that the variability of irregular tumor motion can be reduced by using abdominal compression and respiratory training.

Dosimetric Evaluation of Amplitude-based Respiratory Gating for Delivery of Volumetric Modulated Arc Therapy (진폭 기반 호흡연동 체적변조회전방사선치료의 선량학적 평가)

  • Lee, Chang Yeol;Kim, Woo Chul;Kim, Hun Jeong;Park, Jeong Hoon;Min, Chul Kee;Shin, Dong Oh;Choi, Sang Hyoun;Park, Seungwoo;Huh, Hyun Do
    • Progress in Medical Physics
    • /
    • v.26 no.3
    • /
    • pp.127-136
    • /
    • 2015
  • The purpose of this study is to perform a dosimetric evaluation of amplitude-based respiratory gating for the delivery of volumetric modulated arc therapy (VMAT). We selected two types of breathing patterns, subjectively among patients with respiratory-gated treatment log files. For patients that showed consistent breathing patterns (CBP) relative to the 4D CT respiration patterns, the variability of the breath-holding position during treatment was observed within the thresholds. However, patients with inconsistent breathing patterns (IBP) show differences relative to those with CBP. The relative isodose distribution was evaluated using an EBT3 film by comparing gated delivery to static delivery, and an absolute dose measurement was performed with a $0.6cm^3$ Farmer-type ion chamber. The passing rate percentages under the 3%/3 mm gamma analysis for Patients 1, 2 and 3 were respectively 93.18%, 91.16%, and 95.46% for CBP, and 66.77%, 48.79%, and 40.36% for IBP. Under the more stringent criteria of 2%/2 mm, passing rates for Patients 1, 2 and 3 were respectively 73.05%, 67.14%, and 86.85% for CBP, and 46.53%, 32.73%, and 36.51% for IBP. The ion chamber measurements were within 3.5%, on average, of those calculated by the TPS and within 2.0%, on average, when compared to the static-point dose measurements for all cases of CBP. Inconsistent breathing patterns between 4D CT simulation and treatment may cause considerable dosimetric differences. Therefore, patient training is important to maintain consistent breathing amplitude during CT scan acquisition and treatment delivery.

Study on data preprocessing methods for considering snow accumulation and snow melt in dam inflow prediction using machine learning & deep learning models (머신러닝&딥러닝 모델을 활용한 댐 일유입량 예측시 융적설을 고려하기 위한 데이터 전처리에 대한 방법 연구)

  • Jo, Youngsik;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.35-44
    • /
    • 2024
  • Research in dam inflow prediction has actively explored the utilization of data-driven machine learning and deep learning (ML&DL) tools across diverse domains. Enhancing not just the inherent model performance but also accounting for model characteristics and preprocessing data are crucial elements for precise dam inflow prediction. Particularly, existing rainfall data, derived from snowfall amounts through heating facilities, introduces distortions in the correlation between snow accumulation and rainfall, especially in dam basins influenced by snow accumulation, such as Soyang Dam. This study focuses on the preprocessing of rainfall data essential for the application of ML&DL models in predicting dam inflow in basins affected by snow accumulation. This is vital to address phenomena like reduced outflow during winter due to low snowfall and increased outflow during spring despite minimal or no rain, both of which are physical occurrences. Three machine learning models (SVM, RF, LGBM) and two deep learning models (LSTM, TCN) were built by combining rainfall and inflow series. With optimal hyperparameter tuning, the appropriate model was selected, resulting in a high level of predictive performance with NSE ranging from 0.842 to 0.894. Moreover, to generate rainfall correction data considering snow accumulation, a simulated snow accumulation algorithm was developed. Applying this correction to machine learning and deep learning models yielded NSE values ranging from 0.841 to 0.896, indicating a similarly high level of predictive performance compared to the pre-snow accumulation application. Notably, during the snow accumulation period, adjusting rainfall during the training phase was observed to lead to a more accurate simulation of observed inflow when predicted. This underscores the importance of thoughtful data preprocessing, taking into account physical factors such as snowfall and snowmelt, in constructing data models.

Dose verification for Gated Volumetric Modulated Arc Therapy according to Respiratory period (호흡연동 용적변조 회전방사선치료에서 호흡주기에 따른 선량전달 정확성 검증)

  • Jeon, Soo Dong;Bae, Sun Myung;Yoon, In Ha;Kang, Tae Young;Baek, Geum Mun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • Purpose : The purpose of this study is to verify the accuracy of dose delivery according to the patient's breathing cycle in Gated Volumetric Modulated Arc Therapy Materials and Methods : TrueBeam STxTM(Varian Medical System, Palo Alto, CA) was used in this experiment. The Computed tomography(CT) images that were acquired with RANDO Phantom(Alderson Research Laboratories Inc. Stamford. CT, USA), using Computerized treatment planning system(Eclipse 10.0, Varian, USA), were used to create VMAT plans using 10MV FFF with 1500 cGy/fx (case 1, 2, 3) and 220 cGy/fx(case 4, 5, 6) of doserate of 1200 MU/min. The regular respiratory period of 1.5, 2.5, 3.5 and 4.5 sec and the patients respiratory period of 2.2 and 3.5 sec were reproduced with the $QUASAR^{TM}$ Respiratory Motion Phantom(Modus Medical Devices Inc), and it was set up to deliver radiation at the phase mode between the ranges of 30 to 70%. The results were measured at respective respiratory conditions by a 2-Dimensional ion chamber array detector(I'mRT Matrixx, IBA Dosimetry, Germany) and a MultiCube Phantom(IBA Dosimetry, Germany), and the Gamma pass rate(3 mm, 3%) were compared by the IMRT analysis program(OmniPro I'mRT system software Version 1.7b, IBA Dosimetry, Germany) Results : The gamma pass rates of Case 1, 2, 3, 4, 5 and 6 were the results of 100.0, 97.6, 98.1, 96.3, 93.0, 94.8% at a regular respiratory period of 1.5 sec and 98.8, 99.5, 97.5, 99.5, 98.3, 99.6% at 2.5 sec, 99.6, 96.6, 97.5, 99.2, 97.8, 99.1% at 3.5 sec and 99.4, 96.3, 97.2, 99.0, 98.0, 99.3% at 4.5 sec, respectively. When a patient's respiration was reproduced, 97.7, 95.4, 96.2, 98.9, 96.2, 98.4% at average respiratory period of 2.2 sec, and 97.3, 97.5, 96.8, 100.0, 99.3, 99.8% at 3.5 sec, respectively. Conclusion : The experiment showed clinically reliable results of a Gamma pass rate of 95% or more when 2.5 sec or more of a regular breathing period and the patient's breathing were reproduced. While it showed the results of 93.0% and 94.8% at a regular breathing period of 1.5 sec of Case 5 and 6, it could be confirmed that the accurate dose delivery could be possible on the most respiratory conditions because based on the results of 100 patients's respiratory period analysis as no one sustained a respiration of 1.5 sec. But, pretreatment dose verification should be precede because we can't exclude the possibility of error occurrence due to extremely short respiratory period, also a training at the simulation and careful monitoring are necessary for a patient to maintain stable breathing. Consequently, more reliable and accurate treatments can be administered.