• Title/Summary/Keyword: Simulation Orifice

Search Result 119, Processing Time 0.443 seconds

Numerical Simulation of Unsteady Cavitation in a High-speed Water Jet

  • Peng, Guoyi;Okada, Kunihiro;Yang, Congxin;Oguma, Yasuyuki;Shimizu, Seiji
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.66-74
    • /
    • 2016
  • Concerning the numerical simulation of high-speed water jet with intensive cavitation this paper presents a practical compressible mixture flow method by coupling a simplified estimation of bubble cavitation and a compressible mixture flow computation. The mean flow of two-phase mixture is calculated by URANS for compressible fluid. The intensity of cavitation in a local field is evaluated by the volume fraction of gas phase varying with the mean flow, and the effect of cavitation on the flow turbulence is considered by applying a density correction to the evaluation of eddy viscosity. High-speed submerged water jets issuing from a sheathed sharp-edge orifice nozzle are treated when the cavitation number, ${\sigma}=0.1$, and the computation result is compared with experimental data The result reveals that cavitation occurs initially at the entrance of orifice and bubble cloud develops gradually while flowing downstream along the shear layer. Developed bubble cloud breaks up and then sheds downstream periodically near the sheath exit. The pattern of cavitation cloud shedding evaluated by simulation agrees experimental one, and the possibility to capture the unsteadily shedding of cavitation clouds is demonstrated. The decay of core velocity in cavitating jet is delayed greatly compared to that in no-activation jet, and the effect of the nozzle sheath is demonstrated.

Analysis on the Filling Mode of Propellant Supply System for the Korea Space Launch Vehicle (한국형발사체 추진제공급시스템 충전모드 해석)

  • Lee, Jaejun;Park, Sangmin;Kang, Sunil;Oh, Hwayoung;Jung, Eun Sang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.4
    • /
    • pp.50-58
    • /
    • 2016
  • Korean Space Launch Vehicle (KSLV-II) Propellant Supply System charges liquid oxygen and kerosene to each propellant tank for the stages. To charge the launch vehicle propellant tank safety, the propellant charge flow rates and scenarios should be defined. First, the Propellant Supply System was modeled with 1D flow analysis program. The control valve capacity and orifice size were calculated by performing the 1D steady state simulation. Second, the 1D transient simulation was performed by using the steady state simulation results. As propellants were being charged at the each tank, the increased tank liquid level decreases the charge flow rate. Consequently, the proposed supply system satisfies the required design charging conditions.

Effect of Mixing Elements in Line Mixer on Mixing and Flow Characteristics (혼화 및 유동특성에 미치는 라인믹서 내 혼합요소의 영향)

  • Yu, Dae-Gyeom;Lee, Kye-Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.437-443
    • /
    • 2018
  • This study investigates the effect of the mixing elements on the pressure loss and mixing performance in line mixer. The high density ozone water devices mixed with gas and liquid are used in various fields such as sterilizing of group feeding facilities and water quality management at a fish farm. Due to the decrease in rainfall due to climate change, pasteurization of drinking water from ground water and surface water is extremely important. Therefore, it is intended to develop a line-mixed gas liquid mixer with a small amount of space. In this study, the effects of the number of static mixers and the types and the number of the orifice used in line mixer on the volume fraction and the pressure loss were studied by CFD simulation. The pressure drops of line mixer with orifice which curved vanes were attached to were down to more than 50 percent of that of line mixer with static mixer whereas the mixing performance of the former was similar to that of the latter.

Analysis of Ratio Changing Characteristics of a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속특성 해석)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.179-187
    • /
    • 2001
  • In this paper, a primary pressure regulating type ratio control system is developed for a metal belt CVT, and the CVT ratio changing characteristics are investigated by simulation and experiment. The hydraulic part of the ratio control system has a simple structure with one 3-way spool valve as a main ratio control valve and one bleed type variable force solenoid as a pilot valve. The mathematical modelling of the CVT hydraulic system is derived by considering the CVT shift dynamics. Simulation results of CVT speed ratio and the primary pressure agree with the experimental results demonstrating the validity of the dynamic models. It is found from the simulation and experimental results that the response time of speed ratio and primary pressure can be shortened by increasing the ratio control valve port area, and the size of feedback orifice of ratio control valve gives a damping effect on the primary pressure oscillation.

  • PDF

Case study on Remodeling Clearwell Hydraulic Structure using Transient CFD Simulation Technique (Transient CFD 모사기법을 이용한 정수지 최적설계 사례연구)

  • Kim, Seon-Jin;Kim, Seong-Su;Park, No-Suk;Cha, Min-Whan;Wang, Chang-Keun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.425-432
    • /
    • 2010
  • From the results of tracer test for the existing clearwell in Y water treatment plant, $T_{10}$ and T10/T were calculated as 150 min and 0.24, respectively. Therefore it required the modification schemes for improving hydraulic efficiency, surrogated by $T_{10}$ and $T_{10}$/T, and disinfection performance. In this study, using transient CFD(Computational Fluid Dynamics) simulation technique, tracer tests on dynamic condition for the suggested schemes were simulated. From the results of simulation, it was revealed that 8~6 baffles are necessary to guarantee the disinfection ability in the existing clearwell. Also, installing orifice baffle in the vicinity of inlet could increase plug flow fraction within clearwell.

Flow Analysis of the Rotating Sludge Suction Collector by Numerical Simulation (수치시뮬레이션을 이용한 흡입식 슬러지 수집기의 유동해석)

  • Suh, Sang-Ho;Roh, Hyung-Woon;Byun, Jong-Youn
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.5 s.38
    • /
    • pp.22-27
    • /
    • 2006
  • Sedimentation phenomenon of suspended solids occurs by the gravitational force. Pollution particles are separated from slowly flowing waste water in clarifier. Recently, the sludge suction collector is Preferred rather than the scraper type sludge collector due to the enhancement of the clarifier efficiency. The sludge suction collector is usually operated by the user's experiences without any scientific and/or technical consideration. To evaluate the performance of sludge suction collector, the three dimensional numerical simulation was conducted by the finite volume method. To analyze the performance, the velocity vectors and the suction flow rates of the orifices were investigated. The result showed that each suction flow rate through out the collector was equivalent in the sludge suction collector and the efficiency of suction collector was good to remove high concentrated sludge in clarifier.

A Study on the Analysis of Pressure Characteristics of Hydraulic Modulator for Anti-Lock Brake System (미끄럼 방지 제동장치용 유압모듈레이터의 압력 특성 해석에 관한 연구)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.120-127
    • /
    • 1996
  • Anti-lock Brake System has been developed to reduce tendency for wheel lock and improve vehicle control during sudden braking on slippery road surfaces. This is achieved by controlling the braking pressure, avoiding wheel lock, while retaining handling and brake performance. This paper is concerned about pressurecharacteristics of hydraulic modulator. Experimental sets which is consists of hydraulic modulator, duty controller, pressure regulator, pressure senset is consuructed. System modelling and computer simulation are performed for comparison with experimental results. Brake wheel pressure are measured under various driving pulse. The result of experiment show fairly agreement with the simulation. As a result, it is known that wheel pressure is affected by duty ratio, orifice diameter through computer simulation.

  • PDF

Soil interaction effects on the performance of compliant liquid column damper for seismic vibration control of short period structures

  • Ghosh, Ratan Kumar;Ghosh, Aparna Dey
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.89-105
    • /
    • 2008
  • The paper presents a study on the effects of soil-structure-interaction (SSI) on the performance of the compliant liquid column damper (CLCD) for the seismic vibration control of short period structures. The frequency-domain formulation for the input-output relation of a flexible-base structure with CLCD has been derived. The superstructure has been modeled as a linear, single degreeof-freedom (SDOF) system. The foundation has been considered to be attached to the underlying soil medium through linear springs and viscous dashpots, the properties of which have been represented by complex valued impedance functions. By using a standard equivalent linearization technique, the nonlinear orifice damping of the CLCD has been replaced by equivalent linear viscous damping. A numerical stochastic study has been carried out to study the functioning of the CLCD for varying degrees of SSI. Comparison of the damper performance when it is tuned to the fixed-base structural frequency and when tuned to the flexible-base structural frequency has been made. The effects of SSI on the optimal value of the orifice damping coefficient of the damper has also been studied. A more convenient approach for designing the damper while considering SSI, by using an established model of a replacement oscillator for the structure-soil system has also been presented. Finally, a simulation study, using a recorded accelerogram, has been carried out on the CLCD performance for the flexible-base structure.

A Study on Hydraulic Transients of Letdown System of Nuclear Power Plant (원자력발전소 유출계통의 과도현상에 대한 연구)

  • Kim, Min;Chung, Chang-Kyu;Kim, Eun-Kee;Ro, Tae-Sun;Lee, Soung-No;Yoo, Seong-Yeon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.493-498
    • /
    • 2002
  • The letdown system of pressurized water reactor (PWR) nuclear fewer plants had experienced instabilities in letdown system due to unacceptable flow characteristics of control valves. The Korean Standard Nuclear Power Plants (KSNPs) have three flow paths in parallel for letdown new control. Each flow path consists of two offices and one isolation valve. This study evaluates the effect of orifice arrangement and valve stroke time of letdown isolation valve on the system transients because sudden flow changes due to valve actuation can generate high pressure peaks in letdown line. A pressure transient analysis has been preformed to evaluate the impact of dynamic transients. This analysis uses MMS which is a simulation code developed by EPRI based on the method of characteristics. The result shows that the pressure peak is reduced in the continuous arrangement but negligible. Additionally, it shows that the stroke time of linear type flog valve greater than 15 seconds can give more stable performance.

  • PDF

Motion of a Horizontal Vortex Under a Background Rotation (배경회전 하의 수평 보텍스의 거동)

  • Suh Yong Kweon;Yeo Chang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1101-1110
    • /
    • 2005
  • In this paper we present the numerical results of the behavior of the horizontal vortex generated by ejecting a liquid vertically upward from an orifice into the bulk fluid above the orifice. The numerical calculation has been performed for the axi-symmetric Navier-Stokes equation. A simple flow-visualization experiment was also conducted to qualitatively verify the numerical solutions. Three cases of the flow configurations studied in this paper are; firstly, the vortex was generated without any background rotation, secondly, the vortex was made under a full background rotation, and thirdly, the vortex was made during the spin-up process such that only the region adjacent to the side wall was set into motion viewed in the inertial frame of reference. It was shown that the swirl flow at the inlet boundary affects considerably the formation and development of the vortex for the second case. In the third case, it was remarkable to see that the vortex cannot penetrate into the region near to the side wall of the tank, because of the strong swirl flow and corresponding high pressure gradient in the region.