• Title/Summary/Keyword: Simulation Nuclear Fuel

Search Result 298, Processing Time 0.021 seconds

Facility to study neutronic properties of a hybrid thorium reactor with a source of thermonuclear neutrons based on a magnetic trap

  • Arzhannikov, Andrey V.;Shmakov, Vladimir M.;Modestov, Dmitry G.;Bedenko, Sergey V.;Prikhodko, Vadim V.;Lutsik, Igor O.;Shamanin, Igor V.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2460-2470
    • /
    • 2020
  • To study the thermophysical and neutronic properties of thorium-plutonium fuel, a conceptual design of a hybrid facility consisting of a subcritical Th-Pu reactor core and a source of additional D-D neutrons that places on the axis of the core is proposed. The source of such neutrons is a column of high-temperature plasma held in a long magnetic trap for D-D fusionreactions. This article presents computer simulation results of generation of thermonuclear neutrons in the plasma, facility neutronic properties and the evolution of a fuel nuclide composition in the reactor core. Simulations were performed for an axis-symmetric radially profiled reactor core consisting of zones with various nuclear fuel composition. Such reactor core containing a continuously operating stationary D-D neutron source with a yield intensity of Y = 2 × 1016 neutrons per second can operate as a nuclear hybrid system at its effective coefficient of neutron multiplication 0.95-0.99. Options are proposed for optimizing plasma parameters to increase the neutron yield in order to compensate the effective multiplication factor decreasing and plant power in a long operating cycle (3000-day duration). The obtained simulation results demonstrate the possibility of organizing the stable operation of the proposed hybrid 'fusion-fission' facility.

Thickness evaluation of Cr coating fuel rod using encircling ECT sensor

  • Park, Jeong Won;Ha, Jong Moon;Seung, Hong Min;Jang, Hun;Choi, Wonjae
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3272-3282
    • /
    • 2022
  • To improve the safety and life extension qualities of nuclear fuel rods which is currently made of zirconium (Zr) alloy, research on the application of chromium (Cr) coating was conducted. Cr coating has advantages such as increased corrosion resistance and reduced oxidation rate, but non-destructive thickness evaluation studies are needed to ensure the reliability of the steps taken to provide uniform coating thickness. Eddy current testing (ECT) is a representative non-destructive technique for such as thickness evaluation and surface defect inspection. To inspect changes in thickness at micron scale, the Swept Frequency Eddy Current Testing (SFECT) method was applied to select a frequency range sensitive to changes in thickness. The coating thickness was evaluated using changes in signals, such as that for impedance. In this study, basic research was performed to evaluate the thickness of the Cr coating on a rod using an encircling sensor and the SFECT technique. The sensor design parameters were determined through simulation, after which the new sensor was manufactured. A sensor capable of measuring the thickness of a non-uniformly Cr-coating rod was selected through an experiment evaluating the performance of the manufactured sensor. This was done using the impedance-difference of a Cr-coating rod and a Zr alloy rod. The possibility of evaluation of the Cr coating thickness was confirmed by comparing the experimental results with the selected sensor and the signals of the measured Cr-coating rod. All simulation results were verified experimentally.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.

Development of A Methodology for In-Reactor Fuel Rod Supporting Condition Prediction (노내 연료봉 지지조건 예측 방법론 개발)

  • Kim, K. T.;Kim, H. K.;K. H. Yoon
    • Nuclear Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 1996
  • The in-reactor fuel rod support conditions against the fretting wear-induced damage can be evaluated by residual spacer grid spring deflection or rod-to-grid gap. In order to evaluate the impact of fuel design parameters on the fretting wear-induced damage, a simulation methodology of the in-reactor fuel rod supporting conditions as a function of burnup has been developed and implemented in the GRIDFORCE program. The simulation methodology takes into account cladding creep rate, initial spring deflection, initial spring force, and spring force relaxation rate as the key fuel design parameters affecting the in-reactor fuel rod supporting conditions. Based on the parametric studies on these key parameters, it is found that the initial spring deflection, the spring force relaxation rate and cladding creepdown rate are in the order of the impact on the in-reactor fuel rod supporting conditions. Application of this simulation methodology to the fretting wear-induced failure experienced in a commercial plant indicates that this methodology can be utilized as an effective tool in evaluating the capability of newly developed cladding materials and/or new spacer grid designs against the fretting wear-induced damage.

  • PDF

Analytical criteria for fuel fragmentation and burst FGR during a LOCA

  • Khvostov, G.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2402-2409
    • /
    • 2020
  • Analytical criteria for the onset of fuel fragmentation and Burst Fission Gas Release in fuel rods with ballooned claddings are formulated. On that basis, the GRSW-A model integrated with a fuel behaviour code is updated. After modification, the updated code is successfully applied to simulation of the Halden LOCA test IFA-650.12. Specifically, the calculation with Burst Fission Gas Release during the test resulted in prediction of cladding failure, whereas it could not be predicted at the test planning, before new models were implemented. A good agreement of the current model with experimental data for transient Fission Gas Release in the tests IFA-650.12 and IFA-650.14 is shown, as well.

The JFNK method for the PWR's transient simulation considering neutronics, thermal hydraulics and mechanics

  • He, Qingming;Zhang, Yijun;Liu, Zhouyu;Cao, Liangzhi;Wu, Hongchun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.258-270
    • /
    • 2020
  • A new task of using the Jacobian-Free-Newton-Krylov (JFNK) method for the PWR core transient simulations involving neutronics, thermal hydraulics and mechanics is conducted. For the transient scenario of PWR, normally the Picard iteration of the coupled coarse-mesh nodal equations and parallel channel TH equations is performed to get the transient solution. In order to solve the coupled equations faster and more stable, the Newton Krylov (NK) method based on the explicit matrix was studied. However, the NK method is hard to be extended to the cases with more physics phenomenon coupled, thus the JFNK based iteration scheme is developed for the nodal method and parallel-channel TH method. The local gap conductance is sensitive to the gap width and will influence the temperature distribution in the fuel rod significantly. To further consider the local gap conductance during the transient scenario, a 1D mechanics model is coupled into the JFNK scheme to account for the fuel thermal expansion effect. To improve the efficiency, the physics-based precondition and scaling technique are developed for the JFNK iteration. Numerical tests show good convergence behavior of the iterations and demonstrate the influence of the fuel thermal expansion effect during the rod ejection problems.

Investigations on the Pu-to-244Cm ratio method for Pu accountancy in pyroprocessing

  • Sunil S. Chirayath;Heukjin Boo;Seung Min Woo
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3525-3534
    • /
    • 2023
  • Non-uniformity of Pu and Cm composition in used nuclear fuel was analyzed to determine its effect on Pu accountancy in pyroprocessing, while employing the Pu-to-244Cm ratio method. Burnup simulation of a typical pressurized water reactor fuel assembly, required for the analysis, was carried out using MCNP code. Used fuel nuclide composition, as a function of nine axial and two radial meshes, were evaluated. The axial variation of neutron flux and self-shielding effects were found to affect the uniformity of Pu and Cm compositions and in turn the Pu-to-244Cm ratio. However, the results of the study showed that these non-uniformities do not affect the use of Pu-to-244Cm ratio method for Pu accountancy, if the measurement samples are drawn from the voloxidized powder at the feed step of pyroprocessing. 'Material Unaccounted For' and its uncertainty estimates are also presented for a pyrprocessing facility to verify safeguards monitoring requirements of the IAEA.

Evaluation of Neutron Flux Accounting for Shadowing Effect Among the Dry Storage Casks (경수로 사용후핵연료 건식저장용기 간 중성자 표면선속 간섭률 평가)

  • Min Woo Kwak;Shin Dong Lee;Kwang Pyo Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2024
  • The Korean 2nd basic plan for management of high-level radioactive waste presented a plan to manage spent nuclear fuel through dry storage facilities in NPP on-site. For the construction and operation of the facility, it is necessary to develop the monitoring system of the integrity of spent nuclear fuel before operation. NUREG-1536 recommends that the theoretical cask array, typically in the 2×10 array, should account for shadowing effect among the dry storage casks. The objective of this study was to evaluate neutron flux accounting for shadowing effect among dry storage casks. The neutron release rate was evaluated using ORIGEN based on the design basis fuel condition. And the simulation of dry storage casks and evaluation of the shadowing effect were performed using MCNP. Shadowing effect of other dry storage casks was the highest at the center of the dry storage facility of the 2×10 array compared with the outside of the cask. The shadowing effect of neutron flux on the surface among the metal casks was approximately 18% at point 1, 23% at point 2, and 43% at point 3. For the concrete casks, the shadowing effect of neutron flux on the surface was approximately 46% at point 1, 51% at point 2, and 52% at point 3. This means that correction is necessary to monitor the integrity of spent nuclear fuel in each dry storage cask through evaluation of shadowing effect. The results of this study will be used for comparative analysis of neutron measurement data from spent nuclear fuels in dry storage cask. Additionally, the neutron flux evaluation procedure used in this study could be used as the basic data of safety assessment of dry storage cask and development of safety guide.

CFD simulation of flow and heat transfer characteristics in a 5×5 fuel rod bundles with spacer grids of advanced PWR

  • Wang, Yingjie;Wang, Mingjun;Ju, Haoran;Zhao, Minfu;Zhang, Dalin;Tian, Wenxi;Liu, Tiancai;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1386-1395
    • /
    • 2020
  • High fidelity nuclear reactor fuel assembly simulation using CFD method is an effective way for the structure design and optimization. The validated models and user practice guidelines play critical roles in achieving reliable results in CFD simulations. In this paper, the international benchmark MATiS-H is studied carefully and the best user practice guideline is achieved for the rod bundles simulation. Then a 5 × 5 rod bundles model in the advanced pressurized water reactor (PWR) is established and the detailed three-dimensional thermal-hydraulic characteristics are investigated. The influence of spacer grids and mixing vanes on the flow and hear transfer in rod bundles is revealed. As the coolant flows through the spacer grids and mixing vanes in the rod bundles, the drastic lateral flow would be induced and the pressure drop increases significantly. In addition, the heat transfer is enhanced remarkably due to the strong mixing effects. The calculation results could provide meaningful guidelines for the design of advanced PWR fuel assembly.

CFD investigation of a JAEA 7-pin fuel assembly experiment with local blockage for SFR

  • Jeong, Jae-Ho;Song, Min-Seop
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3207-3216
    • /
    • 2021
  • Three-dimensional structures of a vortical flow field and heat transfer characteristics in a partially blocked 7-pin fuel assembly mock-up of sodium-cooled fast reactor have been investigated through a numerical analysis using a commercial computational fluid dynamics code, ANSYS CFX. The simulation with the SST turbulence model agrees well with the experimental data of outlet and cladding wall temperatures. From the analysis on the limiting streamline at the wall, multi-scale vortexes developed in axial direction were found around the blockage. The vortex core has a high cladding wall temperature, and the attachment line has a low cladding wall temperature. The small-scale vortex structures significantly enhance the convective heat transfer because it increases the turbulent mixing and the turbulence kinetic energy. The large-scale vortex structures supply thermal energy near the heated cladding wall surface. It is expected that control of the vortex structures in the fuel assembly plays a significant role in the convective heat transfer enhancement. Furthermore, the blockage plate and grid spacer increase the pressure drop to about 36% compared to the bare case.