• Title/Summary/Keyword: Simulation Experiment

Search Result 4,423, Processing Time 0.038 seconds

Simulation and Verification Experiment of Cooling and Heating Load for a Test Space with Forced Ventilation (강제환기가 적용된 시험공간에서 냉난방부하의 시뮬레이션 및 실증실험)

  • Kim, Dong-Hyuk;Hong, Hi-Ki;Yoo, Ho-Seon;Kim, Ook-Joong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.947-954
    • /
    • 2006
  • Building energy consumption according to the ventilation has been considered to be an important subject. The purpose of this study is to investigate the cooling and heating loads in a test space with a forced ventilating system. In the test space, on/off controlled air-conditioning and forced ventilating facility were operated between 8 : 30 to 21 : 00 during 4 days and some important data like temperatures and energy consumption were measured to obtain actual thermal loads. The simulation was carried out in a mode of temperature level control using a TRNSYS 15.3 with a precisely measured air change amount and performance data of air-conditioner. Heating load and cooling load including sensible and latent were compared between by experiment and by simulation. Both of thermal loads associated with ventilation show a close agreement within an engineering tolerance.

COMPARISON OF RIDE COMFORTS VIA EXPERIMENT AND COMPUTER SIMULATION

  • Yoo, W.S.;Park, S.J.;Park, D.W.;Kim, M.S.;Lim, O.K.;Jeong, W.B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.309-314
    • /
    • 2006
  • In this paper, the ride comfort from a computer simulation was compared to the experimental result. For measuring ride comfort of a passenger car, acceleration data was obtained from the floor and seat during highway running with different speeds. The measured acceleration components were multiplied by the proper weighting functions, and then summed together to calculate overall ride values. Testing several passenger cars, the ride comforts were compared. In order to investigate the effect of vibration signals on the steering wheel, an apparatus to measure the vibrations and weighting functions on the steering wheel were designed. The effect of the steering accelerations on the ride comfort were investigated and added for the overall ride comfort. For the computer simulations, Korean dummy models were developed based on the Hybrid III dummy models. For the Korean dummy scaling, the national anthropometric survey of Korean people was used. In order to compare and check the validity of the developed Korean dummy models, dynamic responses were compared to those of Hybrid III dummy models. The computer simulation using the MADYMO software was also compared to the experimental results.

Comparison of pants pattern by adolescent boy's body type using 3D virtual simulation

  • Cha, Su-Joung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.75-84
    • /
    • 2019
  • The purpose of this study was to present a good pants pattern for boys aged 13-18 by comparing and analyzing the pants pattern according to lower body shape. And through it, this study was to provide basic data for pants production considering male student body shape. The pattern of this study used the industrial type Lee Hee-chun pattern and DC Suite Program for 3D virtual simulation. As a result of the appearance evaluation, there was a significant difference between the patterns in most items. Type 2 was rated highly, followed by Type 4, Type 3, and Type 1. Type 1 required correction of the length of the pants and the amount of crotch part, while type 3 required adjustment of the pants in the knee area. Type 4 required correction of pattern drawing method of crotch width, thigh circumference, and knee circumference. This pattern method was evaluated as suitable for slender body shape. This study suggests a pants pattern system suitable for adolescent boys by reflecting the body shape characteristics of adolescent boy with a change of body shape. It is expected that this will meet the increasing demand for fitting. In this study, we have examined 3D virtual simulation, not actual wear experiment, so it will be necessary to investigate the difference through actual clothing experiment for adolescent boys.

On the validation of ATHLET 3-D features for the simulation of multidimensional flows in horizontal geometries under single-phase subcooled conditions

  • Diaz-Pescador, E.;Schafer, F.;Kliem, S.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3567-3579
    • /
    • 2022
  • This paper provides an assessment of fluid transport and mixing processes inside the primary circuit of the test facility ROCOM through the numerical simulation of Test 2.1 with the system code ATHLET. The experiment represents an asymmetric injection of cold and non-borated water into the reactor coolant system (RCS) of a pressurized water reactor (PWR) to restore core cooling, an emergency procedure which may subsequently trigger a core re-criticality. The injection takes place at low velocity under single-phase subcooled conditions and presents a major challenge for the simulation in lumped parameter codes, due to multidimensional effects in horizontal piping and vessel arising from density gradients and gravity forces. Aiming at further validating ATHLET 3-D capabilities against horizontal geometries, the experiment conditions are applied to a ROCOM model, which includes a newly developed horizontal pipe object to enhance code prediction inside coolant loops. The obtained results show code strong simulation capabilities to represent multidimensional flows. Enhanced prediction is observed at the vessel inlet compared to traditional 1-D approach, whereas mixing overprediction from the descending denser plume is observed at the upper-half downcomer region, which leads to eventual deviations at the core inlet.

Quantitative measures of thoroughness of FBD simulations for PLC-based digital I&C system

  • Lee, Dong-Ah;Kim, Eui-Sub;Yoo, Junbeom
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.131-141
    • /
    • 2021
  • Simulation is a widely used functional verification method for FBD programs of PLC-based digital I&C system in nuclear power plants. It is difficult, however, to estimate the thoroughness (i.e., effectiveness or quality) of a simulation in the absence of any clear measure for the estimation. This paper proposes two sets of structural coverage adequacy criteria for the FBD simulation, toggle coverage and modified condition/decision coverage, which can estimate the thoroughness of simulation scenarios for FBD programs, as recommended by international standards for functional safety. We developed two supporting tools to generate numerous simulation scenarios and to measure automatically the coverages of the scenarios. The results of our experiment on five FBD programs demonstrated that the measures and tools can help software engineers estimate the thoroughness and improve the simulation scenarios quantitatively.

A Numerical Simulations on the Flow over Ogee Spillway with Pier (교각이 설치된 월류형 여수로에서의 흐름에 대한 수치모의)

  • Kim, Dae-Geun;Lee, Jae-Hyung;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.5
    • /
    • pp.363-373
    • /
    • 2004
  • This study analyzed the hydrodynamic flow behavior on a standard ogee spillway with pier by using FLOW-3D. The simulation results were compared with the experiment data of U.S. Army Corps of Engineers - Waterways Experiment Station (WES) and also compared with 2-dimensional simulation results on a spillway without pier. In particular, the characteristics of the distribution of the overflow nappe and pressure in a spillway with pier were investigated in detail. As for the results of the simulation on the flow rate, overflow nappe, and pressure, although there were a few differences in the experiment results of WES, they were identical in most cases in terms of trend. Summarizing the major flow behavior in a standard ogee spillway with pier, first, the water stage at the center line of the bay was higher than that at the side of the bay along the pier. Second, when the water head was larger than the design head of the spillway, at the upstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the side of the bay along the pier. On the other hand, at the downstream area of the weir crest, the absolute magnitude of negative pressure occurred highest at the centerline of the bay.

Transverse Vibration Analysis of the Deploying Beam by Simulation and Experiment (시뮬레이션과 실험을 통한 전개하는 보의 횡 방향 진동 분석)

  • Kim, Jaewon;Zhu, Kefei;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.12
    • /
    • pp.866-873
    • /
    • 2015
  • The transverse vibration of the deploying beam from rigid hub was analyzed by simulation and experiment. The linear governing equation of the deploying beam was obtained using the Euler-Bernoulli beam theory. To discretize the governing equation, the Galerkin method was used. After transforming the governing equation into the weak form, the weak form was discretized. The discretized equation was expressed by the matrix-vector form, and then the Newmark method was applied to simulate. To consider the damping effect of the beam, we conducted the modal test with various beam length. The mass proportional damping was selected by the relation of the first and second damping ratio. The proportional damping coefficient was calculated using the acquired natural frequency and damping ratio through the modal test. The experiment was set up to measure the transverse vibration of the deploying beam. The fixed beam at the carriage of the linear actuator was moved by moving the carriage. The transverse vibration of the deploying beam was observed by the Eulerian description near the hub. The deploying or retraction motion of the beam had the constant velocity and the velocity profile with acceleration and deceleration. We compared the transverse vibration results by the simulation and experiment. The observed response by the Eulerian description were analyzed.

A comparative analysis of the simulation results of total window thermal transmittance(Uw) according to the evaluation method - Focused on comparison of the single window simulation results - (창세트 전체 열관류율(Uw) 평가 방법에 따른 시뮬레이션 결과 비교 분석 - 단창 창세트에 대한 시뮬레이션 결과 비교를 중심으로 -)

  • Lee, Yong-jun;Oh, Eun-joo;Kim, Sa-kyum;Choi, Hyun-jung;Kim, Yu-min
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.77-82
    • /
    • 2016
  • Purpose: The aim of this study is to calculate U-factor of the window using international standard methods and compare quantitative and tendency difference focused on ISO standard 15099 and ISO standard 10077. And the result of ISO standard calculation methods is verified using thermal performance experiment to evaluate applicability of domestic certification system. This study is utilized a basis for activation of domestic window certification system. Method: First, 16 cases are selected that is combined a variety of frame, Glazing, spacer, etc. The selected cases were simulated using WINDOW&THERM based on ISO 15099 and 10077 calculation method. Second, experiment was conducted based on Korean standard condition. Then, it was compared the error of experiment and simulation results. Through this process, ISO 15099 and 10077 calculation methods were evaluated accuracy and utilization. Result: The results show that the difference of ISO 15099 and ISO 10077-2 is maximum 5.4%. The results of comparing U-factor errors based on the Korea standard experiment test found 2.4%. Consequently, it will be possible to combination calculation methods of ISO 15099 and ISO 10077 for a single window.

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation (싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향)

  • Lee, Hyunho;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.435-444
    • /
    • 2016
  • In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.