• Title/Summary/Keyword: Simulation EnergyPlus

Search Result 122, Processing Time 0.026 seconds

A study on method for improving renewable energy supply ratio for the school building applied PV system (태양광발전 시스템이 설치된 학교건물의 신재생에너지 공급비율 증가방안에 관한 연구)

  • Kim, Seok-Hyun;Lee, Yong-Ho;Hwang, Jung-Ha;Cho, Young-Hum
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.42-49
    • /
    • 2013
  • Recently, the attention to renewable energy has increased globally because of the environmental issue and the global energy crisis. Accordingly, south korea is focused on increasing the renewable energy usage. And the government enforced a law to the public buildings to install the renewable energy facilities. In this study, the building to evaluate renewable energy consumption and supply ratio was selected. This building has 9.79% of renewable energy supply ratio by PV system. In this study, the method for improving renewable energy supply ratio was analyzed using additional PV system. And The 5 methods to increasing electricity were evaluated. The method of increase 4.24 times PV arrays area is most efficient way to increase the renewable supply ratio. The case 1, show that the increasing renewable energy supply ratio of 39.2% compared to exsiting PV system. The result of the above, consider the additional supply of renewable energy.

BUILDING INFORMATION MODELING (BIM)-BASED DESIGN OF ENERGY EFFICIENT BUILDINGS

  • Cho, Chung-Suk;Chen, Don;Woo, Sungkwon
    • Journal of KIBIM
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • With the increased awareness of energy consumption as well as the environmental impact of building operations, architects, designers and planners are required to place more consideration on sustainability and energy performance of the building. To ensure most of those considerations are reflected in the building performance, critical design decisions should be made by key stakeholders early during the design development stage. The application of BIM during building energy simulations has profoundly improved the energy analysis process and thus this approach has gained momentum. However, despite rapid advances in BIM-based processes, the question still remains how ordinary building stakeholders can perform energy performance analysis, which has previously been conducted predominantly by professionals, to maximize energy efficient building performance. To address this issue, we identified two leading building performance analysis software programs, Energy Plus and IES (IES ), and compared their effectiveness and suitability as BIM-based energy simulation tools. To facilitate this study, we examined a case study on Building Performance Model (BPM) of a single story building with one door, multiple windows on each wall, a slab and a roof. We focused particularly on building energy performance by differing building orientation and window sizes and compared how effectively these two software programs analyzed the performance. We also looked at typical decision-making processes implementing building energy simulation program during the early design stages in the U.S. Finally, conclusions were drawn as to how to conduct BIM-based building energy performance evaluations more efficiently. Suggestions for further avenues of research are also made.

The Improvement of Building Envelope Performance in Existing School Building (기존 학교 건물의 외피 성능 개선 방안에 관한 연구)

  • Bang, Ah-Young;Park, Se-Hyeon;Kim, Jin-Hee;Kim, Young-Jae;Kim, Jun-Tae
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.69-76
    • /
    • 2015
  • Purpose: This study is to investigate the effects of facade insulation and window remodeling of an existing old middle school building on the reduction of energy consumption. Method: To analyze energy performance of building, using DesignBuilder v3.4, building energy simulation tool based EnergyPlus engine. Energy consumption and problem of target building was analyzed based on data and survey. Based on building energy simulations it analyzed the variation of energy demand for the building according to U-value of wall, glazing properties and external shading devices. Result: When insulation of building was reinforced, cooling and heating load was decreased. Glazing properties that minimize cooling and heating energy consumption were analyzed. In conclusion, it is important to choose SHGC and U-value of window fit in characteristic of target building. Setting external blind for cooling load decreases 5%.

Operating Characteristics of MCFC System on the Diversification of Fuel (연료 다변화에 따른 용융 탄산염 연료전지 시스템 운전 특성)

  • Im, Seokyeon;Sung, Yongwook;Han, Jaeyoung;Yu, Sangseok
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.156-163
    • /
    • 2015
  • The fuel cells have been investigated in the applications of marine as the high efficient and eco-friendly power generating systems. In this study, modeling of IR Type molten carbonate fuel cell (Internal Reforming Type molten carbonate fuel cell) has been developed to analyze the feasibility of thermal energy utilization. The model is developed under Aspen plus and used for the study of system performances over regarding fuel types. The simulation results show that the efficiency of MCFC system based on NG fuel is the highest. Also, it is also verified that the steam reforming is suitable as pre-reforming for diesel fuel.

Simulation of a 50 ㎾ Phosphoric Acid Fuel Cell System Using Natural Gas (천연가스를 사용하는 50 ㎾ 인산형 연료전지 시스템의 전산모사)

  • 서정원;김성준;설용건;이태희
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.75-82
    • /
    • 1993
  • A 50 ㎾ phosphoric acid fuel cell(PAFC) system using natural gas was simulated for steady state with the commercial software, ASPEN PLUS. The USER block and the FORTRAN block were prepared to simulate the cell. The changes of hydrogen yield according to the variation of several operating conditions were examined and the operating conditions to maximize hydrogen yield were obtained. The simulation results agree with the real data, which can be used to prepare the basic process data and the optimal conditions for the domestic commercial fuel cell system. H$_2$utilization rate over 50% should be maintained to achieve the efficiency of the conventional electricity generation. Energy consumption can be reduced by utilizing the heat released from the reformer and the cell which are operated at high temperatures.

  • PDF

Analysis of Building Energy using Meteorological Numerical Simulation Data over Busan Metropolitan Areas (부산지역에서의 기상 수치모의 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kim, Min-Jun;Lee, Kang-Yeol;Kang, Dong-Bae;Park, Chang-Hyoun;Lee, Hwa-Woon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.503-510
    • /
    • 2014
  • To estimate the benefit of high-resolution meteorological data for building energy estimation, a building energy analysis has been conducted over Busan metropolitan areas. The heating and cooling load has been calculated at seven observational sites by using temperature, wind and relative humidity data provided by WRF model combined with the inner building data produced by American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE). The building energy shows differences 2-3% in winter and 10-30% in summer depending on locations. This result implicates that high spatiotemporal resolution of meteorological model data is significantly important for building energy analysis.

A Elicitation Method of Optimum Slat Angle of Fixed Venetian Blind Considering Energy Performance and Discomfort Glare in Buildings (건물에너지성능 및 불쾌현휘를 고려한 고정형 블라인드의 최적 슬랫각도 도출 방법에 관한 연구)

  • Park, Jang Woo;Yoon, Jong Ho;Oh, Myung-Hwan;Lee, Kwang-Ho
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.107-112
    • /
    • 2012
  • The purpose of this study is to determine the optimum slat angle of the venetian blind which was applied at an outer skin of a curtain-wall system. The evaluation of the blind slat angle was performed in terms of the comfortable visual environment and decreased energy consumption. The office building prototype was considered for the analysis and simulation variables include application of blind, blind slat angle and dimming control of lighting. The annual energy consumption and incidence rate of discomfort glare were analyzed using EnergyPlus which is developed by the U. S. Department of Energy for the detailed building energy simulation. As a result, it turns out that when the blind (reflectance: 0.5) was installed, the annual energy consumption was greater than that of the base model. However, when the dimming control was applied, the maximum energy saving of 16.3% could be achieved at a slat angle of $0^{\circ}$. In addition, in case of the base model, the incidence rate of discomfort glare was 84%, while the case of the blind with the slat angle of $0^{\circ}$ showed that the incidence rate of discomfort glare was 42.4%. Consequently, the results showed that the slat angle of $55^{\circ}$ with dimming control was the optimum strategy for the comfortable visual environment and decreased energy consumption.

Simulation of the flue gas treatment processes of an industrial-waste incinerator using Aspen plus (Aspen plus를 이용한 산업폐기물 소각로의 배가스 처리 공정 모사)

  • Lee, Ju-Ho;Jung, Moon-Hun;Kwon, Young-Hyun;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.11
    • /
    • pp.3246-3252
    • /
    • 2009
  • The interest on the recovery of thermal energy using the waste has been rising to solve the problems of continuous increase of waste generation and the depletion of the fossil fuel recently. The incineration has been used most popularly as a treatment process of the waste for the energy recovery. However, it is expected that incineration and design cost will increase in the treatment of air contaminant emitted from incinerator. This research has simulated the actual incinerator and the flue gas treatment system using the Aspen plus which is the software to simulate the chemical process. The incineration process is composed of the 1st and 2nd combustor to burn the waste, SNCR process to reduce the $NO_x$ using the urea, and the steam generation process to save the energy during incineration. The $Ca(OH)_2$ slurry was used as an acid gas (HCl, $SO_2$) treatment materials and the removal efficiency for the products from the neutralization of acid gas in SDA and combustion ash was simulated at the bag filter. The simulation result has been corresponded with the treatment efficiency of emitted gas from the actual industrial waste incinerator and it is presumed to be used to forecast the efficiencies of flue gas treatment system in the future.

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Nationwide Reduction of Primary Energy and Greenhouse Gas Emission by PMV Control Considering Individual Metabolic Rate Variations in Apartments (아파트 건물에서 재실자 활동량이 고려된 PMV제어에 따른 연간 국가 차원의 1차 에너지 및 온실가스 감축량 분석)

  • Hong, Sung-Hyup;Do, Sung-Lok;Lee, Kwang Ho
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.10
    • /
    • pp.37-44
    • /
    • 2018
  • In this study, the effects of considering hourly metabolic rate variations for predicted mean vote (PMV) control on the heating and cooling energy and greenhouse gas emission were investigated. The case adopting PMV control taking the hourly metabolic rate into account was comparatively analyzed against the conventional dry-bulb air temperature control, using a detailed simulation technique. Under the assumption that all the apartments in Korea adopt the PMV control incorporating real-time metabolic rate measurements, nationwide reductions of primary energy and greenhouse gas emission were analyzed. As a result, PMV control considering hourly metabolic rate variations is expected to reduce national primary energy by 6.2% compared to conventional dry-bulb air temperature control, corresponding to reduction of 10,342 GWh. In addition, it turned out that 6.6% of tCO2 emission can be reduced by adopting PMV control, corresponding to nationwide reduction of greenhouse gas emission by approximately 1,720,000 tCO2.