• Title/Summary/Keyword: Simulated nuclear spent fuel rod

Search Result 4, Processing Time 0.019 seconds

Slitting Test of Simulated Fuel Rod by Using a Newly Developed Decladding Device (실증용 탈피복 장치를 이용한 모의 핵연료 슬릿팅 시험)

  • Jung, J.H.;Hong, D.H.;Kim, Y.H.;Park, B.S.;Lee, J.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, we developed a decladding device which separates 250 mm length of simulated nuclear spent fuel rod into the pallets and the pieces of the hulls after inserting the rod cut into the module with several pairs of blades. To improve the performance of the equipment, we considered some mechanisms to prevent the rod cut from being exposed or bounced into the hot-cell, to reduce the operation time, and to insert the rods automatically. It is expected that the newly developed system will contribute to prevent radioactive pollution in the hot-cell, reduce the operation time, and to increase the safety of the operators. As a result of the performance test for some mockup fuel rod cuts in the ACP(Advanced Spent Fuel Control Process) facility, it was verified that the decladding device could be applied to the actual fuel rod cut. And it will be able to use for a scale-up facility in the future.

  • PDF

Experimental simulation of activity release from leaking fuel rods

  • Somfai, Barbara;Hozer, Zoltan;Nagy, Imre
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1148-1153
    • /
    • 2018
  • The Leaking Fuel Experiment test facility was designed to simulate the activity release from spent leaking fuel rods under steady state and transient conditions in the spent fuel pool. The experimental rig included an electrically heated fuel rod with different defects and a cooling system. The fission product transport was simulated by potassium-chloride. The conductivity changes of the water in the cooling system were measured to provide information about the amount of released solution. Defects of different sizes and positions were applied, together with a wide range of rod powers to simulate decay heat. The produced data can be used for predicting the activity release from leaking fuel under storage conditions and for the interpretation of fuel examination procedures.

Spent fuel simulation during dry storage via enhancement of FRAPCON-4.0: Comparison between PWR and SMR and discharge burnup effect

  • Dahyeon Woo;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4499-4513
    • /
    • 2022
  • Spent fuel behavior of dry storage was simulated in a continuous state from steady-state operation by modifying FRAPCON-4.0 to incorporate spent fuel-specific fuel behavior models. Spent fuel behavior of a typical PWR was compared with that of NuScale Power Module (NPMTM). Current PWR discharge burnup (60 MWd/kgU) gives a sufficient margin to the hoop stress limit of 90 MPa. Most hydrogen precipitation occurs in the first 50 years of dry storage, thereby no extra phenomenological safety factor is identified for extended dry storage up to 100 years. Regulation for spent fuel management can be significantly alleviated for LWR-based SMRs. Hydride embrittlement safety criterion is irrelevant to NuScale spent fuels; they have sufficiently lower plenum pressure and hydrogen contents compared to those of PWRs. Cladding creep out during dry storage reduces the subchannel area with burnup. The most deformed cladding outer diameter after 100 years of dry storage is found to be 9.64 mm for discharge burnup of 70 MWd/kgU. It may deteriorate heat transfer of dry storage by increasing flow resistance and decreasing the view factor of radiative heat transfer. Self-regulated by decreasing rod internal pressure with opening gap, cladding creep out closely reaches the saturated point after ~50 years of dry storage.