• Title/Summary/Keyword: Simulated HAZ

Search Result 44, Processing Time 0.022 seconds

Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms (해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계)

  • Park, Jiwon;Cho, Sung Kyu;Cho, Young Wook;Shin, Gunchul;Kwon, Yongjai;Lee, Jung Gu;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

Effect of chemical composition on the weldability of quenched and tempered high strength steels (주질고장력강의 용접성에 미치는 화학조성의 영향)

  • 장웅성;김숙환;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1988
  • In fabrication of various welded structures made of high strength steels, the occurence of hydrogen assisted cracking and embrittlement in HAZ is prime importance. The present work was carried out to clarify the effect of chemical compositions, especially B and/or Ti addition on the cold cracking susceptibility and HAZ embrittlement in low crabon equivalent steel. Tests results showed that the addtio of optimum boron content in steel with low Pem value i.e., below 0.20 % was the best way to improve the weldability as well as the mechanicla properties of $60kg/mm^2$ grade quenched and tempered high strength steels.

  • PDF

Estimation of Microstructures and Material Properties of HAZ in SA508 Reactor Pressure Vessel (원자로 압력용기 용접열영향부의 미세조직 및 재료물성 예측)

  • Lee, S.G.;Kim, J.S.;Jin, T.E.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.138-143
    • /
    • 2001
  • To perform the rigorous integrity evaluation of RPV, it is necessary to consider metallurgical factors such as microstructure evolution during multi-pass welding process and PWHT. The microstructures of the heat affected zone(HAZ) of SA508 steel were predicted by a combination of simulated thermal analysis and a simple kinetic models for austenite grain growth and austenite-ferrite transformation. Phase equilibrium of SA508 steel were calculated using a Thermo-Calc package. Carbide growth in th HAZ were predicted by a empirical model, taking into account the predicted microstructure evolution.

  • PDF

Effect of Peak Temperature on the Grain Growth in Simulated HAZ of Cr-Mo-V Steel(T24) (Cr-Mo-V강(T24)의 재현 HAZ의 결정립 성장에 미치는 피크온도의 영향)

  • Lee, Kyong-woon;Lee, Seong-hyeong;Na, Hye-sung;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.6
    • /
    • pp.55-61
    • /
    • 2016
  • Recently developed ferritic heat resistance steel, T24 was used to evaluate microstructure characteristics of simulated heat affected zone. Also, correlation between the prior austenite grain size and amount of $M_{23}C_6$ carbide dissolution was discussed. With the increasing of peak temperature, Grain size steadily increased up to $1050^{\circ}C$ and then rapidly increased at $1150^{\circ}C$. Of the peak temperature $950{\sim}1050^{\circ}C$, amounts of $M_{23}C_6$carbide dissolution are low. But Most of $M_{23}C_6$ carbide that is inhibited grain growth were dissolved above $1050^{\circ}C$ and decreased volume fraction of carbide. This indicates that grain growth may be achieved through dissolution of carbide in the base material. As of welding, due to very rapid heating rate, $M_{23}C_6$ carbide exists above equilibrium solution temperature that is $800^{\circ}C$, even at $1050^{\circ}C$. So, It was confirmed that close correlation between carbide dissolution in the base material and grain growth. Calculated grain size has a linear relationship with peak temperature, on the other hand, measured grain size discontinuously increased between $950{\sim}1050^{\circ}C$ and above $1050^{\circ}C$. Grain size of heat affected zone at $1350^{\circ}C$ peak temperature showed maximum 67um and minimum 4um. Also, The number of side showed 3 to 10.

Development and Evaluation of Predictive Model for Microstructures and Mechanical Material Properties in Heat Affected Zone of Pressure Vessel Steel Weld (압력용기강 용접 열영향부에서의 미세조직 및 기계적 물성 예측절차 개발 및 적용성 평가)

  • Kim, Jong-Sung;Lee, Seung-Gun;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2399-2408
    • /
    • 2002
  • A prediction procedure has been developed to evaluate the microtructures and material properties of heat affected zone (HAZ) in pressure vessel steel weld, based on temperature analysis, thermodynamics calculation and reaction kinetics model. Temperature distributions in HAE are calculated by finite element method. The microstructures in HAZ are predicted by combining the temperature analysis results with the reaction kinetics model for austenite grain growth and austenite decomposition. Substituting the microstructure prediction results into the previous experimental relations, the mechanical material properties such as hardness, yielding strength and tensile strength are calculated. The prediction procedure is modified and verified by the comparison between the present results and the previous study results for the simulated HAZ in reactor pressure vessel (RPV) circurnferential weld. Finally, the microstructures and mechanical material properties are determined by applying the final procedure to real RPV circumferential weld and the local weak zone in HAZ is evaluated based on the application results.

Mechanical Properties and Microstructures of High Heat Input Welded Tandem EGW Joint in EH36-TM Steel (대입열 EH36-TM강의 Tandem EGW 용접부 미세조직 및 기계적 성질)

  • Jeong, Hong-Chul;Park, Young-Hwan;An, Young-Ho;Lee, Jong-Bong
    • Journal of Welding and Joining
    • /
    • v.25 no.1
    • /
    • pp.57-62
    • /
    • 2007
  • In the coarse grained HAZ of conventional TiN steel, most TiN particles are dissolved and austenite grain growth easily occurrs during high heat input welding. To avoid this difficulty, thermal stability of TiN particles is improved by increasing nitrogen content in EH36-TM steel. Increased thermal stability of TiN particle is helpful for preventing austenite grain growth by the pinning effect. In this study, the mechanical properties and microstructures of high heat input welded Tandem EGW joint in EH36-TM steel with high nitrogen content were investigated. The austenite grain size in simulated HAZ of the steel at $1400^{\circ}C$ was much smaller than that of conventional TiN steel. Even for high heat input welding, the microstructure of coarse grained HAZ consisted of fine ferrite and pearlite and the mechanical properties of the joint were sufficient to meet all the requirements specified in classification rule.

An Experimental Study on High Temperature Material Properties of Welded Joint (용접부의 고온 재료물성에 대한 실험적 연구)

  • Baek, Un-Bong;Yun, Gi-Bong;Seo, Chang-Min;Lee, Hae-Mu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3096-3103
    • /
    • 2000
  • High temperature material properties of a welded joint were experimentally studied. Tensile and creep properties were measured for each part of weld metal. HAZ(heat affected zone) and parent metal at 538$^{\circ}C$. HAZ metal was obtained by a simulated heat treatment. Results showed that the order of tensile strength is weld>HAZ> parent both at 24$^{\circ}C$ and at 538$^{\circ}C$. Creep resistance was also the highest for weld metal and lowest for parent metal. Creep rupture life curves were obtained and converted to Monkman-Grant relation which is useful for life assessment. Use of the data obtained in this study is discussed.

Cr - Mo鋼 熔接 後熱處理材 의 勞破壞 에 關한 硏究

  • 박재규;김석원;김연식
    • Journal of Welding and Joining
    • /
    • v.3 no.2
    • /
    • pp.16-26
    • /
    • 1985
  • Post weld heat treatment(PWHT), at more than 600.deg. C, is essential to remove residual stress and hydrogen in weld HAZ and improve fatigue characteristics. However, residual stress during PWHT is responsible for PWHT embitterment and it promotes precipitation of impurities to grain boundary. In this paper, the effect of stress simulated residual stress on fatigue failure was evaluated by fatigue test, microhardness test and fractograph. The obtained results are summarized as follows; (1) The fatigue crack growth rate(da/dN) of parent and heat treated parent was affected by microstructure due to heat treatment and it depended on stress intensity factor (.DELTA.k). (2) The fatigue strength of weld HAZ was dependent on applied stress during PWHT and da/dN after PWHT was slower than as-weld. (3) Softening amount of weld HAZ was bigger than any other due to PWHT. Hardness value of weld HAZ was affected by heat treatment under the applied stress of 10 $kgf/mm^2$, but beyond 20 $kgf/mm^2$ it was increased by the applied stress rather than heat treatment. (4) Beyond the applied stress of 20 $kgf/mm^2$ during PWHT, intergranular fracture surface was observed and its amount was increased with applied stress during PWHT. (5) Effect of applied stress during PWHT on aspect of fracture surface was larger rather than that on fatigue crack growth behavior.

  • PDF

Local brittle zone of offshore structural steel welds (해양구조용 강재의 국부취화영역에 관한 연구)

  • 김병천;엄정현;이종섭;이성학;이두영
    • Journal of Welding and Joining
    • /
    • v.7 no.2
    • /
    • pp.35-48
    • /
    • 1989
  • This study is concerned with a correlation of microstructure and local brittle zone (LBZ) in offshore structural steel welds. The influence of the LBZ on fracture toughness was investigated by means of simulated heat-affected zone (HAZ) tests as well as welded joint tests. Micromechanical processes involved in void and cleavage microcrack formation were also identified using notched round tensile tests and subsequent SEM observations. The LBZ in the HAZ of a multiphase welded joint is the interstitially reheated coarse grained HAZ, which is influenced by metallurgical factors such as effective grain size, the major matrix structure and the amount of high-carbon martensite-austenite (M-A) constituents. The experimental results indicate that Chirpy energy was found to scale monotonically with the amount of M-A constituents, confirming that the M-A constituent is the major microstructural factor controlling the HAZ toughness. In addition, voids and microcracks are observed to initiate at M-A constituents by the shear cracking process. Thus, the M-A constituent played an important role in initiating the voids and microcracks, and consequently caused brittle fracture.

  • PDF

Effects of Complex Oxides on HAZ Toughness of Three API X80 Linepipe Steels (API X80 라인파이프강의 용접열영향부 충격인성에 미치는 복합산화물의 영향)

  • Shin, Sang Yong;Oh, Kyoungsik;Kang, Ki Bong;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.199-208
    • /
    • 2008
  • This study is concerned with effects of complex oxides on Charpy impact toughness of heat affected zone (HAZ) of API X80 linepipe steels. Three kinds of steels were fabricated by varying alloying elements such as Ti, Al, and Mg and hot-rolling conditions to form complex oxides, and their microstructures and Charpy impact properties were investigated. The number of complex oxides present in the steel containing excess Ti, Al, and Mg was twice larger than that in the conventional steels, while their size ranged from 1 to $3{\mu}m$ in the three steels. After the HAZ simulation test, the steel containing a number of oxides contained about 20 vol.% of acicular ferrite in the simulated HAZ, together with bainitic ferrite and martensite, whereas the HAZ microstructure of the conventional steels consisted of bainitic ferrite and martensite with a small amount of acicular ferrite. This formation of acicular ferrite in the oxide-containing steel was associated with the nucleation of acicular ferrite at complex oxides, thereby leading to the great (five times or more) improvement of Charpy impact toughness over the conventional steels.