• Title/Summary/Keyword: Simulated Die-Casting Process

Search Result 11, Processing Time 0.031 seconds

Numerical Simulationof Plaster Casting with Pressurized Vibration (진동을 부가한 저압의 석고주조 공정 해석)

  • Kim, Gi-Don;Yang, Dong-Yeol;Jeong, Jun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.101-109
    • /
    • 2001
  • The simulated die casting process in which the traditional plaster casting process is combined with rapid prototyping technology is being used to produce Al, Mg and Zn die casting prototypes. Because of lower mechanical properties induced by the large grain structure and incomplete filling, conventional plaster casting is not suitable for the simulated die casting process. A plaster casting process with pressurized vibration was developed for the simulated die casting process[5]. In this paper, numerical simulation for the filling stage of the process has been performed to show the effect of the pressurized vibration for complete filling. Treatment of boundary condition based on the finite element method has been proposed for imparted pressurized vibration in the plaster casting process.

  • PDF

Development of the Simulated Die Casting Process by using Rapid Prototyping (쾌속 조형 공정을 이용한 다이캐스팅 제품의 시작 공정 개발)

  • Kim K. D.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.02a
    • /
    • pp.180-186
    • /
    • 2002
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce Al, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared as the die-castings and the thin walls of the plaster mold cavity may not be completely fillet Because of lower mechanical properties induced by the large grain structure and incomplete Idling, the conventional plaster casting process is not suitable for the trial die-casting Process. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have runner system, are made using these patterns. Imparted pressurized vibration to molten metal has made grain structure of castings much finer and improved fluidity of the molten metal enough to obtain complete filling at thin walls which can not be filled in the conventional plaster casting process.

  • PDF

Design and Development of the Simulated Die casting Process by using Rapid Prototyping (쾌속조형을 이용한 다이 캐스팅 제품의 시작 공정 설계 및 제작)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho;Park, Tae-Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.167-173
    • /
    • 2001
  • The simulated die-casting process in which the traditional plaster casting process is combined with Rapid Prototyping technology is being used to produce AI, Mg, and Zn die-casting prototypes. Unlike in the die-casting process, molten metal in the conventional plaster casting process is fed via a gravity pour into a mold and the mold does not cool as quickly as a die-casting mold. The plaster castings have much larger and grosser grain structure as compared with the normal die-castings and the thin walls of the plaster mold cavity may not be completely filled. Because of lower mechanical properties induced by the large grain structure and incomplete filling, the conventional plaster casting process is not suitable for the trial die-casting process to obtain quality prototypes. In this work, an enhanced trial die-casting process has been developed in which molten metal in the plaster mold cavity is vibrated and pressurized simultaneously. Patterns for the casting are made by Rapid Prototyping technologies and then plaster molds, which have a runner system, are made using these patterns. Pressurized vibration to imparted molten metal has made grain structure of castings much finer and improved fluidity of the molten enough to obtain complete filling at thin walls which may not be filled in the conventional plaster casting process..

  • PDF

Development of Magnesium Seat Frames using the Vacuum Die Casting Process (진공 다이캐스팅 공정을 이용한 마그네슘 합금 시트프레임의 개발)

  • Shin, Hyun-Woo;Han, Beom-Suk;Yoo, Hyung-Jo;Jung, Hyun-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.88-97
    • /
    • 2009
  • The vacuum die casting techniques can diminish the porosity of products and provide better surface appearance by the ordinary high pressure die casting process. The vacuum system can also reduce the cold laps in the die casting process and minimize the overflow pockets of the die. The vacuum system does not need high pressures to die cast compared to the ordinary die casting process, and so enables die casting of large parts for a given machine size. Parts made by the vacuum system have higher strength and more elongation than parts made by the ordinary die casting systems. In this paper, we designed and produced the Magnesium seat frames using the vacuum die casting processes. The new Magnesium seat frame was designed to satisfy safety regulations. Some safety test procedures of the seat frame were simulated by the finite element method. We obtained 10% weight reduction by design modification of seat frames compared to the current model. Flow simulations were carried out to minimize the trial and error in producing the parts. The die casted parts using vacuum systems resulted in better mechanical characteristics and no defects compared to those without vacuum systems.

The Effect of Rheology Flow with Grain Size Controlled Material on Solid Particles Behavior (결정립 제어 소재의 레오로지 유동이 고상입자의 거동에 미치는 영향)

  • Jung Y. S.;Seo P. K.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.351-359
    • /
    • 2005
  • The semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Also, the rheo-casting has been substituted for thixo-casting, because the rheo-casting can control the solid particles to globular and non-dendritic solid phase. In the rheo-casting process, the important thing is to control the solid particles behavior in semi-solid materials. So in this paper, to control solid particles behavior in semi-solid materials, we experimented about the die filling tests during the semi-solid die casting in 0.3, 0.4, 0.5 and 0, 6 solid fraction. The die filling in semi-solid die casting were simulated by MAGMA soft/thixo module. By the die filling tests and computer simulation, the effect of solid particles behavior in rheology flow had been investigated.

The Effect of Rheology flow with Grain Size Controlled Material on Solid Particles Behavior (결정립 제어소재의 레오로지 유동이 고상입자의 거동에 미치는 영향)

  • 정용식;서판기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.664-667
    • /
    • 2004
  • The semi-solid processing is now becoming of great interest for the production of various parts by pressure die casting. Also, the rheolory casting has been substituted for thixo casting, because the rheology casting can control the solid particles to globular and non-dendritic solid phase. In the rheology casting process, the important thing is to control the solid particles behavior in semi-solid materials. So in this paper, to control solid particles behavior in semi-solid materials, we experimented about the die filling during the semi-solid die casting in 0.3, 0.4, 0.5, 0,6 solid fraction. The die filling in semi-solid die casting were simulated by MAGMAsoft/thixo module. By the die filling tests and computer simulation, the effect of solid particles behavior in rheology flow had been investigated.

  • PDF

A Study on Die Casting Process of the Automobile Oil Pan Using the Heat Resistant Magnesium Alloy (내열마그네슘 합금을 이용한 자동차용 오일팬의 다이캐스팅 공정 연구)

  • Shin, Hyun-Woo;Chung, Yeon-Jun;Kang, Seung-Goo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.45-53
    • /
    • 2009
  • Die casting process of Mg alloys for high temperature applications was studied to produce an engine oil pan. The aim of this paper is to evaluate die casting processes of the Aluminium oil pan and in parallel to apply new Mg alloy for die casting the oil pan. Temperature distributions of the die and flow pattern of the alloys in cavity were simulated to diecast a new Mg alloy by the flow simulation software. Dies have to be modified according to material characteristics because melting temperature and heat capacity are different. We changed the shape and position of runner, gate, vent hole and overflow by the simulation results. After several trial and error, oil pans of AE44 and MRI153M Mg alloys are produced successfully without defect. Sleeve filling ratio, cavity filling time and shot speed of die casting machine are important parameter to minimize the defect for die casting Magnesium alloy.

The Effect of the Gate Shape on the Microstructure of the Grain Size Controlled Material (게이트 형상이 결정립 제어 소재의 미세조직에 미치는 영향)

  • Jung Y.S.;Seo P. K.;Kang C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.49-56
    • /
    • 2005
  • In the semi-solid die casting process, an important thing is the flow behavior of semi-solid materials. The flow patterns of the semi-solid material can make the defects during die filling. To control the flow patterns is very important and difficult. In this paper, the flow behavior of the semi-solid A356 alloy material during die filing at various die gate shapes has been observed with the grain size controlled material. The effect of the gate shape on the die filling characteristics was investigated. The filling tests in each plunger stroke were experimented, and also simulated on the semi-solid material die casting process by MAGMAsoft. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation has been investigated.

The Effect of the Gate Shape on the Controlled Material the Microstructure of Grain Size (게이트 형상이 결정입 제어 소재의 미세조직에 미치는 영향)

  • Jung Y. S.;Bae J. W.;Seo P. K.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.152-155
    • /
    • 2004
  • In the semi-solid die casting process, the important thing is the flow behaviors of semi-solid material. The flow patterns of semi-solid material can make the defects during die filling. To control of the flow patterns, is very important and difficult. In this paper, the flow behaviors of the semi-solid A356 alloy material during die filling at various die gate shapes has been observed with the grain size controlled material. The effects of the gate shape on the die filling characteristics were investigated. The filling tests in each plunger strokes were experimented, also simulated on the semi-solid material die casting process by MAGMAsofi. According to the filling tests and computer simulation, the effect of the gate shape on liquid segregation had been investigated.

  • PDF

A study on Characteristics of Molten Metal Flow in Vacuum DieCasting by Numerical Analysis (수치해석에 의한 진공다이캐스팅에서의 용탕 유동특성 연구)

  • Park, Jin-Young;Lim, Kwan-Woo;Lee, Kwang-Hak;Kim, Sung-Bin;Kim, Eok-Soo;Park, Ik-Min
    • Journal of Korea Foundry Society
    • /
    • v.27 no.4
    • /
    • pp.153-158
    • /
    • 2007
  • Molten metal flow in vacuum die casting was characterized by a numerical analysis. The VOF method was used to simulate the filling behaviors of molten metal during filling process. The various vacuum degrees of no vacuum(760 mmHg), 650, 500, 250 and 60mmHg were artificially applied in cavity. And the filling behaviors of molten metal with the applied vacuum conditions were simulated and compared with those of experiment. The results showed that molten metal was partially filled into cavity when vacuum was applied and the filling length of molten metal in cavity was increased with increasing applied reduced pressure in cavity. Also, the simulated filling behaviors of molten metal were apparently similar to those of experiment, indicating the numerical analysis developed in this study was highly effective. Through the result of fluid flow simulation, both relation equations of filling length and filling velocity with the variation of pressure conditions in cavity were calculated respectively and the internal gas contents of casting was significantly reduced by the modification of vacuum gate system.