• Title/Summary/Keyword: Simulated Annealing

Search Result 636, Processing Time 0.033 seconds

Hybrid CSA optimization with seasonal RVR in traffic flow forecasting

  • Shen, Zhangguo;Wang, Wanliang;Shen, Qing;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4887-4907
    • /
    • 2017
  • Accurate traffic flow forecasting is critical to the development and implementation of city intelligent transportation systems. Therefore, it is one of the most important components in the research of urban traffic scheduling. However, traffic flow forecasting involves a rather complex nonlinear data pattern, particularly during workday peak periods, and a lot of research has shown that traffic flow data reveals a seasonal trend. This paper proposes a new traffic flow forecasting model that combines seasonal relevance vector regression with the hybrid chaotic simulated annealing method (SRVRCSA). Additionally, a numerical example of traffic flow data from The Transportation Data Research Laboratory is used to elucidate the forecasting performance of the proposed SRVRCSA model. The forecasting results indicate that the proposed model yields more accurate forecasting results than the seasonal auto regressive integrated moving average (SARIMA), the double seasonal Holt-Winters exponential smoothing (DSHWES), and the relevance vector regression with hybrid Chaotic Simulated Annealing method (RVRCSA) models. The forecasting performance of RVRCSA with different kernel functions is also studied.

Tool Path Optimization for NC Turret Operation Using Simulated Annealing (풀림모사 기법을 이용한 NC 터릿 작업에서의 공구경로 최적화)

  • 조경호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1183-1192
    • /
    • 1993
  • Since the punching time is strongly related to the productivity in sheet metal stamping, there have been a lot of efforts to obtain the optimal tool path. However, most of the conventional efforts have the basic limitations to provide the global optimal solution because of the inherent difficulties of the NP hard combinatorial optimization problem. The existing methods search the optimal tool path with limiting tool changes to the minimal number, which proves not to be a global optimal solution. In this work, the turret rotation time is also considered in addition to the bed translation time of the NCT machine, and the total punching time is minimized by the simulated annealing algorithm. Some manufacturing constraints in punching sequences such as punching priority constraint and punching accuracy constraint are incorporated automatically in optimization, while several user-interactions to edit the final tool path are usually required in commercial systems.

Hybrid of SA and CG Methods for Designing the Ka-Band Group-Delay Equalized Filter (Ka-대역 군지연-등화 여파기용 SA 기법과 CG 기법의 하이브리드 설계 기법)

  • Kahng, Sungtek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.8
    • /
    • pp.775-780
    • /
    • 2004
  • This paper describes the realization of the Ka-band group-delay equalized filter desisted with the help of a new hybrid method of Simulated Annealing(SA) and Conjugate Gradient(CG), to be employed by the multi-channel Input Multiplexer for a satellite use, each channel of which comprises a channel filter and a group-delay equalizer. The SA and CG find circuit parameters of an 8th order elliptic function filter and a 2-pole equalizer, respectively. Measurement results demonstrate that the performances of the designed component meet the specifications, and validate the design methods.

A Hybrid Metaheuristic for the Series-parallel Redundancy Allocation Problem in Electronic Systems of the Ship

  • Son, Joo-Young;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.341-347
    • /
    • 2011
  • The redundancy allocation problem (RAP) is a famous NP.complete problem that has beenstudied in the system reliability area of ships and airplanes. Recently meta-heuristic techniques have been applied in this topic, for example, genetic algorithms, simulated annealing and tabu search. In particular, tabu search (TS) has emerged as an efficient algorithmic approach for the series-parallel RAP. However, the quality of solutions found by TS depends on the initial solution. As a robust and efficient methodology for the series-parallel RAP, the hybrid metaheuristic (TSA) that is a interactive procedure between the TS and SA (simulated annealing) is developed in this paper. In the proposed algorithm, SA is used to find the diversified promising solutions so that TS can re-intensify search for the solutions obtained by the SA. We test the proposed TSA by the existing problems and compare it with the SA and TS algorithm. Computational results show that the TSA algorithm finds the global optimal solutions for all cases and outperforms the existing TS and SA in cases of 42 and 56 subsystems.

The Optimal Design of Air Bearing Sliders of Optical Disk Drives by Using Simulated Annealing Technique (SA 기법을 이용한 광디스크 드라이브 공기베어링 슬라이더의 최적설계)

  • Chang, Hyuk;Kim, Hyun-Ki;Kim, Kwang-Sun;Rim, Kyung-Hwa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1545-1551
    • /
    • 2002
  • The optical storage device has recently experienced significant improvement, especially for the aspects of high capacity and fast transfer rate. However, it is necessary to study a new shape of air bearing surface for the rotary type actuator because the optical storage device has the lower access time than that of HDD (Hard Disk Drives). In this study, we proposed the air bearing shape by using SA (Simulated Annealing) algorithm which is very effective to achieve the global optimum instead of many local optimums. The objective of optimization is to minimize the deviation in flying height from a target value 100nm. In addition, the pitch and roll angle should be maintained within the operation limits.

Efficient Heuristics for Flowshop Scheduling for Minimizing the Makespan and Total Flowtime of Jobs

  • Hirakawa, Yasuhiro;Ishigaki, Aya
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • The problem of scheduling in permutation flowshops has been extensively investigated by many researchers. Recently, attempts are being made to consider more than one objective simultaneously and develop algorithms to obtain a set of Pareto-optimal solutions. Varadharajan et al. (2005) presented a multi-objective simulated-annealing algorithm (MOSA) for the problem of permutation-flowshop scheduling with the objectives of minimizing the makespan and the total flowtime of jobs. The MOSA uses two initial sequences obtained using heuristics, and seeks to obtain non-dominated solutions through the implementation of a probability function, which probabilistically selects the objective of minimizing either the makespan or the total flowtime of jobs. In this paper, the same problem of heuristically developing non-dominated sequences is considered. We propose an effective heuristics based on simulated annealing (SA), in which the weighted sum of the makespan and the total flowtime is used. The essences of the heuristics are in selecting the initial sequence, setting the weight and generating a solution in the search process. Using a benchmark problem provided by Taillard (1993), which was used in the MOSA, these conditions are extracted in a large-scale experiment. The non-dominated sets obtained from the existing algorithms and the proposed heuristics are compared. It was found that the proposed heuristics drastically improved the performance of finding the non-dominated frontier.

Comparison of Genetic Algorithm and Simulated Annealing Optimization Technique to Minimize the Energy of Active Contour Model (유전자 알고리즘과 시뮬레이티드 어닐링을 이용한 활성외곽선모델의 에너지 최소화 기법 비교)

  • Park, Sun-Young;Park, Joo-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.4 no.1
    • /
    • pp.31-40
    • /
    • 1998
  • Active Contour Model(ACM) is an efficient method for segmenting an object. The main shortcoming of ACM is that its result is very dependent on the shape and location of an initial contour. To overcome this shortcoming, a new segmentation algorithm is proposed in this paper. The proposed algorithm uses B-splines to describe the active contour and applies Simulated Annealing (SA) and Genetic Algorithm(GA) as energy minimization techniques. We tried to overcome the initialization problem of traditional ACM and compared the result of ACM using GA and that using SA with 2D synthetic binary images. CT and MR images.

  • PDF

Optimum Design of Sandwich Panel Using Hybrid Metaheuristics Approach

  • Kim, Yun-Young;Cho, Min-Cheol;Park, Je-Woong;Gotoh, Koji;Toyosada, Masahiro
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.6
    • /
    • pp.38-46
    • /
    • 2003
  • Aim of this article is to propose Micro-Genetic Simulated Annealing (${\mu}GSA$) as a hybrid metaheuristics approach to find the global optimum of nonlinear optimisation problems. This approach combines the features of modern metaheuristics such as micro-genetic algorithm (${\mu}GAs$) and simulated annealing (SA) with the general robustness of parallel exploration and asymptotic convergence, respectively. Therefore, ${\mu}GSA$ approach can help in avoiding the premature convergence and can search for better global solution, because of its wide spread applicability, global perspective and inherent parallelism. For the superior performance of the ${\mu}GSA$, the five well-know benchmark test functions that were tested and compared with the two global optimisation approaches: scatter search (SS) and hybrid scatter genetic tabu (HSGT) approach. A practical application to structural sandwich panel is also examined by optimism the weight function. From the simulation results, it has been concluded that the proposed ${\mu}GSA$ approach is an effective optimisation tool for soloing continuous nonlinear global optimisation problems in suitable computational time frame.

ISO Coordination of Generator Maintenance Scheduling in Competitive Electricity Markets using Simulated Annealing

  • Han, Seok-Man;Chung, Koo-Hyung;Kim, Balho-H.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • To ensure that equipment outages do not directly impact the reliability of the ISO-controlled grid, market participants request permission and receive approval for planned outages from the independent system operator (ISO) in competitive electricity markets. In the face of major generation outages, the ISO will make a critical decision as regards the scheduling of the essential maintenance for myriads of generating units over a fixed planning horizon in accordance with security and adequacy assessments. Mainly, we are concerned with a fundamental framework for ISO's maintenance coordination in order to determine precedence of conflicting outages. Simulated annealing, a powerful, general-purpose optimization methodology suitable for real combinatorial search problems, is used. Generally, the ISO will put forward its best effort to adjust individual generator maintenance schedules according to the time preferences of each power generator (GENCO) by taking advantage of several factors such as installed capacity and relative weightings assigned to the GENCOs. Thus, computer testing on a four-GENCO model is conducted to demonstrate the effectiveness of the proposed method and the applicability of the solution scheme to large-scale maintenance scheduling coordination problems.

A Maintenance Design of Connected-(r, s)-out-of-(m, n) F System Using Simulated Annealing (시뮬레이티드 어닐링을 이용한(m, n)중 연속(r,s) : F 시스템의 정비모형)

  • Lee, Sangheon;Kang, Youngtai;Shin, Dongyeul
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.1
    • /
    • pp.98-107
    • /
    • 2008
  • The purpose of this paper is to present an optimization scheme that aims at minimizing the expected cost per unittime. This study considers a linear connected-(r, s)-ouI-of-(m, n):f lattice system whose components are orderedlike the elements of a linear (m, n)-matrix. We assume that all components are in the state 1 (operating) or 0(failed) and identical and s-independent. The system fails whenever at least one connected (r, s)-submatrix offailed components occurs. To find the optimal threshold of maintenance intervention, we use a simulatedannealing(SA) algorithm for the cost optimization procedure. The expected cost per unit time is obtained byMonte Carlo simulation. We also has made sensitivity analysis to the different cost parameters. In this study,utility maintenance model is constructed so that minimize the expense under full equipment policy throughcomparison for the full equipment policy and preventive maintenance policy. The full equipment cycle and unitcost rate are acquired by simulated annealing algorithm. The SA algorithm is appeared to converge fast inmulti-component system that is suitable to optimization decision problem.