• Title/Summary/Keyword: Simplified model

Search Result 2,212, Processing Time 0.028 seconds

Effects of Time-Varying Mass on the Dynamic Behavior of a Descending Parachute System (질량 감소가 낙하산 시스템의 하강 고도 변화에 미치는 효과)

  • Jang, Woo-Young;Baek, Sang-Tae;Myong, Rho-Shin;Jin, Yeon-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.281-289
    • /
    • 2016
  • Accurate prediction of the trajectory and time of a time-varying mass parachute system remains essential in the mission requiring a precision airdrop to the ground. In this study, we investigate the altitude-varying behavior of a cross-type parachute system designed to deliver a time-varying mass object like flare. The dynamics of the descending parachute system was analyzed based on the Runge-Kutta method of the ordinary differential system. The drag coefficients of the cross-type parachute and flare were calculated by a CFD code based on the incompressible Navier-Stokes equation. Finally, by using a simplified gust wind model in troposphere, the combined effects of gust wind and time-varying mass were examined in detail.

Characteristics of Power Amplifier for Energy Efficient Broadcasting Services (에너지 효율적 차세대 방송망 구축을 위한 증폭기 특성과 신호 모델)

  • Han, Jae-Shin;Jeon, Sungho;Choi, Jeong-Min;Seo, Jong-Soo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.884-894
    • /
    • 2013
  • In this paper, we investigate the characteristics of power amplifiers and simplified memoryless non-linear power amplifier models for energy efficient communication system. First, we present the transfer function of GaAs FET (Gallium Arsenide Field Effect Transistor) that is widely used for high power amplifier. From those investigations, we introduce the instantaneous efficiencies and methods of amplification by assuming that the saturated current is constant, while perfect linearity is exploited under knee voltage. Then, we discuss four non-linear power amplifier models in a baseband signal processing. Finally, we explain the specified total power consumption model in a base station to achieve the resonable analysis for energy efficient communication.

A STUDY ON THE STRESS DISTRIBUTION OF THE ALL CERAMIC CROWNS ACCORDING TO THE CUSP ANGLE OF THE MAXILLARY FIRST PREMOLAR USING THREE DIMENSIONAL FINITE ELEMENT METHOD (상악 제1소구치의 교두각에 따른 전부도재관의 응력분포에 관한 삼차원유한요소법적 연구)

  • Kim Won-Kyu;Shin Dong-Kuk;Song Kie-Bum;Dong Jin-Keun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.1
    • /
    • pp.58-72
    • /
    • 2004
  • Statement of problem : Clinically, maxillary first premolar has a high risk of fracture. This is thought to be caused by the susceptible figure which the maxillary first premolar has In other words, sharp cusp angles of the premolar is thought to influence this situation. Purpose : This study was to know stress distribution of all-ceramic crown according to the cusp angle. Material and Method : It was manufactured a three dimensional finite element model simplified maxillary first premolar, and then analyzed stress distribution when cusp angle was each $80^{\circ}$, $90^{\circ}$, $100^{\circ}$, $110^{\circ}$ and $120^{\circ}$. Results and conclusion : 1. The von Misses stress showed that stress decreases as cusp angle increases in the central groove of the occlusal surface. 2. It showed that maximum principal stress was centered at the region of the central groove of the occlusal surface and a region which the force was inflicted. And also it appeared high on the lingual and buccal side of finish line. 3. The X axis of normal stress was focused in the central groove of the occlusal surface. The Y axis normal stress appeared high in the central groove of the occlusal surface, buccal and lingual side. 4. The Stress near the finish line showed a low value compared with stress in the region of the central groove of the occlusal surface. 5. It shows that the most dangerous angle for tooth fracture was on $80^{\circ}$ of the cusp angle and low on $120^{\circ}$ of its.

Point Beach Nuclear Plant Application Study For Power System Stabilizers (Point Beach 동자력발전기에 전력계통안정장치에 대한 연구)

  • Ju-Jang Lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.9
    • /
    • pp.315-324
    • /
    • 1983
  • Dynamic stability problems have been experienced with a generator connected to an infinite bus through a long transmission line. Nuclear turbine-generator units #1 and #2 at the Winsconsin Electric Power Point Baech Station were found to be dynamically unstable when one unit is isolated on one of the lines to Milwaukee or when two units are isolaed on the lines to milwaukee. Power System Stabilizers(PSS) were applied to the excitation system to provide stable operation under these conditions. Suitable settings for the PSS were predetetermined analytically by computer method and root licus analysis of an equivalent single machine-infinite bus configuration. This procedure allows graphical approach to the design of power stabilizers and serves as assynthesis procedure when the design constraints are relaxed so the the speed stabilizer is required ro provide animprovement in system damping. A simplified model of the complete exciter generator system is shown to be adequate for this type of analysis.

  • PDF

A Study on the Improvement of Image Fusion Accuracy Using Smoothing Filter-based Replacement Method (SFR기법을 이용한 영상 융합의 정확도 향상에 관한 연구)

  • Yun Kong-Hyun
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.85-94
    • /
    • 2006
  • Image fusion techniques are widely used to integrate a lower spatial resolution multispectral image with a higher spatial resolution panchromatic image. However, the existing techniques either cannot avoid distorting the image spectral properties or involve complicated and time-consuming decomposition and reconstruction processing in the case of wavelet transform-based fusion. In this study a simple spectral preserve fusion technique: the Smoothing Filter-based Replacement(SFR) is proposed based on a simplified solar radiation and land surface reflection model. By using a ratio between a higher resolution image and its low pass filtered (with a smoothing filter) image, spatial details can be injected to a co-registered lower resolution multispectral image minimizing its spectral properties and contrast. The technique can be applied to improve spatial resolution for either colour composites or individual bands. The fidelity to spectral property and the spatial quality of SFM are convincingly demonstrated by an image fusion experiment using IKONOS panchromatic and multispectral images. The visual evaluation and statistical analysis compared with other image fusion techniques confirmed that SFR is a better fusion technique for preserving spectral information.

  • PDF

Earthquake-induced pounding between the main buildings of the "Quinto Orazio Flacco" school

  • Fiore, Alessandra;Monaco, Pietro
    • Earthquakes and Structures
    • /
    • v.1 no.4
    • /
    • pp.371-390
    • /
    • 2010
  • Historical buildings in seismically active regions are severely damaged by earthquakes, since they certainly were not designed by the original builders to withstand seismic effects. In particular the reports after major ground motions indicate that earthquake-induced pounding between buildings may lead to substantial damage or even collapse of colliding structures. The research on structural pounding during earthquakes has been recently much advanced, although most of the studies are conducted on simplified single degree of freedom systems. In this paper a detailed pounding-involved response analysis of three adjacent structures is performed, concerning the main bodies of the "Quinto Orazio Flacco" school. The construction includes a main masonry building, with an M-shaped plan, and a reinforced concrete building, separated from the masonry one and realized along its free perimeter. By the analysis of the capacity curves obtained by suitable pushover procedures performed separately for each building, it emerges that masonry and reinforced concrete buildings are vulnerable to earthquake-induced structural pounding in the longitudinal direction. In particular, due to the geometric configuration of the school, a special case of impact between the reinforced concrete structure and two parts of the masonry building occurs. In order to evaluate the pounding-involved response of three adjacent structures, in this paper a numerical procedure is proposed, programmed using MATLAB software. Both a non-linear viscoelastic model to simulate impact and an elastic-perfectly plastic approximation of the storey shear force-drift relation are assumed, differently from many commercial softwares which admit just one non-linearity.

Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

  • Kim, Ji-Su;Lee, Han-Sang;Kim, Jong-Sung;Kim, Yun-Jae;Kim, Jin-Won
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.340-350
    • /
    • 2015
  • This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

Development of Performance Evaluation Method of Shock-Resistance(DDAM) using NASTRAN DMAP (NASTRAN DMAP을 활용한 내충격 평가 기법(DDAM) 개발에 관한 연구)

  • M.Y. Shin;J.H. Lee;J.H. Jung;B.H. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.114-120
    • /
    • 1999
  • The DDAM(Dynamic Design Analysis Method) has been the most popular method for the shock response analysis of naval shipboard equipment. It was common to model the equipment as a simplified mass-spring system with multi degree of freedom in DDAM. Nowadays, however, it is necessary to adopt the finite element method for the shock response analysis due to the complexity of equipment. In this study, the DDAM program is developed to evaluate the performance of shock-resistance of FEM models using MSC/NASTRAN DMAP(Direct Matrix Abstraction Program) which provides the practical tools in interfacing with the externally developed program. Through the numerical test of the structural components and comparison with the results of ANSYS DDAM, it is confirmed that the developed program can be applicable to analyze the shock responses of the shipboard equipments.

  • PDF

Structural Analysis and Light-Weight Design of Aircraft Floats with Laminated Composites (복합재 적층판을 이용한 경항공기 플로트 구조해석 및 경량화)

  • Choi, Youn-Gyu;Kim, Sung-Jun;Shin, Eui-Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.1
    • /
    • pp.65-71
    • /
    • 2012
  • In order to improve the structural safety and light-weight design of aircraft floats, natural frequency and static stress analysis are performed under water and ground landing conditions. A finite element mesh based on the design configuration of light aircraft floats is modeled, and simplified water and ground landing loads are applied to this model. The natural frequency and stress analysis of aluminum-alloy floats are carried out first. Then, the structural performance of the floats is re-analyzed in the case of laminated composites, and the numerical results are compared each other. It is concluded that, by tailoring the laminated composites with respect to stacking sequence and ply thickness, the structural safety of the light-weight floats can be improved.

Strategies for Driving and Egress for the Vehicle of a Humanoid Robot in the DRC Finals 2015 (DRC Finals 2015 에서 휴머노이드 로봇의 자동차 운전과 하차에 관한 전략)

  • Ahn, DongHyun;Shin, JuSeong;Jun, Youngbum;Sohn, Kiwon;Jang, Giho;Oh, Paul;Cho, Baek-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.912-918
    • /
    • 2016
  • This paper presents various strategies for humanoid vehicle driving and egress tasks. For driving, a tele-operating system that controls a robot based on a human operator's commands is built. In addition, an autonomous assistant module is developed for the operator. Normal position control can result in severe damage to robots when they egress from vehicles. To prevent this problem, another approach that mixes various joint control techniques is adopted in this study. Additionally, a footplate is newly designed and attached to the vehicle floor for the ground landing phase of the egress task. The attached plate enables the robot to step down onto the ground in a safe manner. For stable locomotion, a balance controller is designed for the humanoid. For the design of the controller, the robot is modeled using an inverted pendulum that consists of a spring and a damper. Then, a state feedback controller (with pole placement and a state observer) is built based on the simplified model. Many approaches that are presented in this paper were successfully applied to a full-sized humanoid, DRC-HUBO+, in the DARPA Robotics Challenge Finals, which were held in the United States in 2015.