• Title/Summary/Keyword: Simplified model

Search Result 2,212, Processing Time 0.031 seconds

MATHEMATICAL MODELING OF VSB-BASED DTV CHANNELS

  • Kim, Hyoung-Nam;Lee, Yong-Tae;Kim, Seung-Won
    • Proceedings of the IEEK Conference
    • /
    • 2001.09a
    • /
    • pp.305-308
    • /
    • 2001
  • We analyze mathematically a VSB (vestigial side-band) transceiver system for the Advanced Television Systems Committee (ATSC) digital television standard and extract a near-baseband equivalent VSB channel model. This model shows the multi-path fading effect of the quadrature component on the in-phase component. Also, we obtain a simplified model of the VSB transceiver system, which is represented by convolution of the transmission signal (before modulation) and the VSB channel. This simplified model is efficiently used for simulation of VSB systems to improve its performances, especially in an equalization part. Applying the DTV channel specifications tested by the Advanced Television Test Conter (ATTC) to the channel model, we obtain an equivalent VSB channel and show the equalization result by using the conventional derision-feedback equalize (DFE).

  • PDF

Evaluation of Models for Estimating Shrinkage Stress in Patch Repair System

  • Kristiawan, Stefanus A.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.4
    • /
    • pp.221-230
    • /
    • 2012
  • Cracking of repair material due to restraint of shrinkage could hinder the intended extension of serviceability of repaired concrete structure. The availability of model to predict shrinkage stress under restraint condition will be useful to assess whether repair material with particular deformation properties is resistance to cracking or not. The accuracy in the prediction will depend upon reliability of the model, input parameters, testing methods used to characterize the input parameters, etc. This paper reviews a variety of models to predict shrinkage stress in patch repair system. Effect of creep and composite action to release shrinkage stress in the patch repair system are quantified and discussed. Accuracy of the models is examined by comparing predicted and measured shrinkage stress. Simplified model to estimate shrinkage stress is proposed which requires only shrinkage property of repair material as an input parameter.

Seismic assessment of steel structures through a cumulative damage

  • Perera, R.;Gomez, S.;Alarcon, E.
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.283-294
    • /
    • 2001
  • In the present work a constitutive model is developed which permits the assessment of the structural performance through a criterion based on cumulative damage. For it, a damage index is defined and is evaluated through the application of the Miner's rule in low-cycle fatigue. However, the damage index is not considered as a posteriori variable since is incorporated explicitly as an internal variable in the constitutive equations which produces a direct coupling between the damage and the structural mechanical behaviour allowing the possibility of considering as a whole different coupled phenomena. For the elaboration of this damage model, the concepts of the mechanics of continuum medium are applied on lumped dissipative models in order to obtain a coupled simplified model. As a result an elastoplastic model coupled with damage and fatigue damage is obtained.

RETRIEVAL OF SOIL MOISTURE AND SURFACE ROUGHNESS FROM POLARIMETRIC SAR IMAGES OF VEGETATED SURFACES

  • Oh, Yi-Sok;Yoon, Ji-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • This paper presents soil moisture retrieval from measured polarimetric backscattering coefficients of a vegetated surface. Based on the analysis of the quite complicate first-order radiative transfer scattering model for vegetated surfaces, a simplified scattering model is proposed for an inversion algorithm. Extraction of the surface-scatter component from the total scattering of a vegetation canopy is addressed using the simplified model, and also using the three-component decomposition technique. The backscattering coefficients are measured with a polarimetric L-band scatterometer during two months. At the same time, the biomasses, leaf moisture contents, and soil moisture contents are also measured. Then the measurement data are used to estimate the model parameters for vv-, hh-, and vh-polarizations. The scattering model for tall-grass-covered surfaces is inverted to retrieve the soil moisture content from the measurements using a genetic algorithm. The retrieved soil moisture contents agree quite well with the in-situ measured soil moisture data.

  • PDF

Developing Function Models of Back-to-Back PWM Converters for Simplified Simulation

  • Van, Tan Luong;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.51-58
    • /
    • 2011
  • In this paper, a function model of back-to-back PWM converters, based on the switching function, is developed for simplified simulation of power electronic application systems. For the function model, the PWM power switches are represented by dependent power sources. By using the proposed function model, the computer memory and the run time required for the simulation of power circuits can be significantly reduced. It is shown that the simulation results generated from the function models are almost the same as the ones obtained by using the switching power device model.

Simplification of Transfer Function Via Walsh Function in Frequency Domain (주파수 영역에서 Walsh 함수에 의한 전달함수의 간단화)

  • Doo-Soo Ahn
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.31 no.8
    • /
    • pp.33-38
    • /
    • 1982
  • This paper deals with the simplification of the transfer function in a frequency domain, viz. the integral of the squared errors between the original and the simplified model is minimized and the latter is estimated by the Walsh function. It tries to minimize the errors between the frequency responses of the two functions. This method is compared with the existing method by means of a numercal example. The frequency response of this simplified model approximates closely to that of the original model. The proposed method is simpler in analysis and easier in implementation than the existing methods. Though the Walsh function can be easily generated with the discrete values, it has errors because its zero crossings are not continuous. This method aims at the reduction of the errors in the real parts and the imaginary parts of the two functions by dividing into the more sub-intervals, and selecting the reduced-order model according to the response of the model. As a result, it can be applied for the simplification of higher order functions into lower order functions and for the design of control systems.

  • PDF

Numerical Analysis Model for Fatigue Life Prediction of Welded Structures (용접구조물의 피로수명예측을 위한 수치해석모델)

  • Lee, Chi-Seung;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.27 no.6
    • /
    • pp.49-54
    • /
    • 2009
  • In this study, the numerical analysis model for fatigue life prediction of welded structures are presented. In order to evaluate the structural degradation of welded structures due to fatigue loading, continuum damage mechanics approach is applied. Damage evolution equation of welded structures under arbitrary fatigue loading is constructed as a unified plasticity-damage theory. Moreover, by integration of damage evolution equation regarding to stress amplitude and number of cycles, the simplified fatigue life prediction model is derived. The proposed model is compared with fatigue test results of T-joint welded structures to obtain its validation and usefulness. It is confirmed that the predicted fatigue life of T-joint welded structures are coincided well with the fatigue test results.

An Approach to Model Ground-Coupled Building Foundation for Energy Simulation (Ground-Coupled 바닥구조체의 열전달 모델링)

  • 임병찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.658-666
    • /
    • 2004
  • In this paper, a two-dimensional transient ground-coupled numerical model for slab-on-grade foundation is developed and integrated into EnergyPlus. A validation analysis is first presented to ensure that for the developed building foundation heat transfer module is properly implemented within EnergyPlus. Then, the predictions from the developed model are compared to those obtained from the simplified building foundation model currently used in EnergyPlus. The results show that the developed foundation heat transfer module accounts better for the effects of the ground thermal mass attributed to the ground than the simplified foundation model currently used in EnergyPlus.

Study on the Simulation of the Intake and Exhaust Systems of a Gasoline Engine Using BOOST (BOOST를 이용한 가솔린 기관 흡·배기 계통의 시뮬레이션에 관한 연구)

  • Lee, Dae-Kwon;Yoon, Keon-Sik;Ryu, Soon-Pil;Woo, Seok-Keun;Seong, Hwal-Gyeong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.23-32
    • /
    • 2013
  • This paper presents the simulation of the multi-cylinder 4-stroke cycle spark-ignition engine using a commercial simulation tool, AVL BOOST. Various models were examined to select the appropriate models that would best serve to analyze the main components of the intake and exhaust systems-the plenum chamber, the muffler and the exhaust manifold branch junction. For the plenum chamber and the muffler, the tank model and the pipe model were tested. In order to analyze the exhaust manifold branch junction, a complicated model which reflects the actual shape and involves pressure drops was compared to a simplified one. The results show that both the tank model and the pipe model are applicable with satisfying accuracies for the plenum chamber and the muffler. However, the tank model is more desirable in regards to convenience in modeling and efficiency in calculation. Though both the complicated model and the simplified model show satisfying accuracies for the exhaust manifold branch junction, the simplified model is recommended in regards to convenience in modeling and efficiency in calculation.

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.