• Title/Summary/Keyword: Simplified fatigue analysis

Search Result 54, Processing Time 0.023 seconds

Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading (굽힘 하중하의 고장력강 용접 연결부의 피로 평가)

  • Lee, Myeong-Woo;Kim, Yun-Jae;Park, Jun-Hyub
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1163-1169
    • /
    • 2014
  • In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual product's welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment.

Fatigue Reliability Analysis Model for GFRP Composite Structures (GFRP 복합구조의 피로신뢰성 해석모형에 관한 연구)

  • 조효남;신재철;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.29-32
    • /
    • 1991
  • It is well known that the fatigue damage process in composite materials is very complicated due to complex failure mechanisms that comprise debounding, matrix cracking, delamination and fiber splitting of laminates. Therefore, the residual strength, instead of a single dominant crack length, is chosen to describe the criticality of the damage accumulated in the sublaminate. In this study, two models for residual strength degradation established by Yang-Liu and Tanimoto-Ishikawa that are capable of predicting the statistical distribution of both fatigue life and residual strength have been investigated and compared. Statistical methodologies for fatigue life prediction of composite materials have frequently been adopted. However, these are usually based on a simplified probabilistic approach considering only the variation of fatigue test data. The main object of this work is to propose a fatigue reliability analysis model which accounts for the effect of all sources of variation such as fabrication and workmanship, error in the fatigue model, load itself, etc. The proposed model is examined using the previous experimental data of GFRP and it is shown that it can be practically applied for fatigue problems in composite materials.

  • PDF

Fatigue Life Assessment of Ship Structures based on Crack Propagation Analysis -Simplified Prediction Method of Stress Intensity Factors- (균열전파해석에 의한 선체의 피로수명 평가법 -응력강도계수의 간이추정법-)

  • C.W. Kim;I.S. Nho;D.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.90-99
    • /
    • 2002
  • The prediction of stress intensity factor(SIF) is one of the most important factors to analyse the propagation behavior of cracks in hull structural members. Up to now, however, simplified prediction method of SIF has not yet been established for the cracks experienced in large complex structures. As a first step to predict crack propagation behavior in a ship structure with very large structural redundancies, simplified SIF prediction formulas for various crack shapes were derived based on the results of the stress analysis under a non-crack condition in this study. The adequacy of the proposed method was then verified in comparison with other experimental and analysis results.

Fatigue Strength Assessment and Improvement of Butt Welding Bead (피로해석을 통한 버트 용접 부위 비드 개선)

  • Suk Yongsuk;Han Sangmin
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.192-197
    • /
    • 2005
  • A welding bead height is closely related to the efficiency of welding work, and the height of 3mm is used in the conventional practice of butt welding. in the present paper, the modification of bead height from 3mm to 6mm is considered to increase the efficiency and work productivity of butt welding on bottom plate (of BONGA FPSO actually built in SHI shipyard). Therefore, fatigue analysis has been carried out using simplified method based on the DNV Rules. It is found that the minimum fatigue life is about 594 years and the butt welding details with 6mm bead height has sufficient strength and resistance against fatigue.

  • PDF

Evaluation of thermal striping damage for a tee-junction of LMR secondary piping”

  • Lee, Hyeong-Yeon;Kim, Jong-Bum;Bong Yoo;Yoon, Sam-Son
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.837-843
    • /
    • 1998
  • This paper presents the thermomechanical and fracture mechanics evaluation procedure of thermal striping damage on the secondary piping of LMFR using Green's function method and standard FEM. The thermohydraulic loading conditions used in the present analysis are simplified sinusoidal thermal loads and the random type data thermal load. The thermomechainical fatigue damage was evaluated according to ASME code subsectionNH. The analysis results of fatigue for the sinusoidal and random load cases show that fatigue failure would occur at a geometrically discontinuous location during 90,000 hours of operation The fracture mechanics analysis showed that the crack would be initiated at an early stage of the operation. The fatigue crack was evaluated to propagate up to 5 ㎜ along the thickness direction during the first 944 and 1083 hours of operation for the sinusoidal and the random loading cases, respectively.

  • PDF

Image Enhancement of Simplified Ultrasonic CT Using Frequency Analysis Method

  • Kim, kyung-Cho;Hiroaki Fukuhara;Hisashi Yamawaki
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1627-1632
    • /
    • 2002
  • In this paper, a simplified ultrasonic CT system, which uses the information in three directions, that is, 90°, +45° and -45°about the inspection plane, is applied to the high strength steel, and the frequency analysis method for enhancing the C scan or CT image is developed. This frequency analysis method is based on the frequency response property of the material. By comparing the magnitudes in the frequency domain, the special frequency which shows a significant difference between the welded joint and base material was found and used to obtain a C scan or CT image. Experimental results for several kinds of specimens, having a welded joint by electron beam welding, a weld joint by arc welding, on a fatigue crack, showed that the obtained C scan or CT image has better resolution than the results of previous experiments using the maximum value of the received waveform.

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • v.49 no.2
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Computer aided failure prediction of reinforced concrete beam

  • Islam, A.B.M. Saiful
    • Computers and Concrete
    • /
    • v.25 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • Traditionally used analytical approach to predict the fatigue failure of reinforced concrete (RC) structure is generally conservative and has certain limitations. The nonlinear finite element method (FEM) offers less expensive solution for fatigue analysis with sufficient accuracy. However, the conventional implicit dynamic analysis is very expensive for high level computation. Whereas, an explicit dynamic analysis approach offers a computationally operative modelling to predict true responses of a structural element under periodic loading and might be perfectly matched to accomplish long life fatigue computations. Hence, this study simulates the fatigue behaviour of RC beams with finite element (FE) assemblage presenting a simplified explicit dynamic numerical solution to show computer aided fatigue behaviour of RC beam. A commercial FEM package, ABAQUS has been chosen for this complex modelling. The concrete has been modelled as a 8-node solid element providing competent compression hardening and tension stiffening. The steel reinforcements are simulated as two-node truss elements comprising elasto-plastic stress-strain behaviour. All the possible nonlinearities are duly incorporated. Time domain analysis has been adopted through an automatic Newmark-β time incremental technique. The program consists of twelve RC beams to visualize the real behaviour during fatigue process and to obtain the reliability of the study. Both the numerical and experimental results indicate a redistribution of stresses along the time and damage accumulation of beam which severely affect the serviceability and ultimate capacity of RC beam. The output of the FEM analysis demonstrates good match with the experimental consequences which affirm the efficacy of the computer aided model. The controlled fatigue damage evolution at service fatigue load limits makes the FE model an efficient tool in predicting high cycle fatigue behaviour of RC structures.

Modeling for the Fatigue Analysis of Al Alloy Casting Containing Internal Shrinkage Defect (내부 결함을 포함하는 알루미늄 합금 주조품의 피로해석을 위한 모델링)

  • Lee, Sung-Won;Kim, Hak-Ku;Hwang, Ho-Young;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.30 no.5
    • /
    • pp.196-200
    • /
    • 2010
  • The structural stress and fatigue behavior of tensile specimen containing internal shrinkage defect were modeled. Real shrinkage defect in casting was scanned by industrial CT (computed tomography), and subsequently its shape was simplified by ellipsoidal primitives for the structural analysis (S.S.M., shape simplification method). The analysis results were compared with the results by real shrinkage shape without any simplification process. It was possible to consider real shrinkage of casting in stress analysis and the method to predict fatigue life of casting with defect was proposed.

Free Spanning of Offshore Pipelines by DNV

  • CHOI HAN SUK
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.47-52
    • /
    • 2005
  • This paper introduces a procedure for free span and fatigue analysis of offshore pipelines per DNV-RP-F105, 2002. The new method includes the axial force and deflection load in pipelines. The screening criteria were established to calculate the allowable span lengths in the new design codes. The screening criteria allows a certain amount of vortex-induced vibration due to wave and current loading. However, the induced pipe stresses are very small and usually below the limit stresess of typical S-N curves. In contrast, the conventional criteria did not allow any vortex-induced vibration in the free span of pipelines. Thus, the screening criteria yields reduced allowable span lengths. A simplified procedure was established to calculate the fatigue damage due to long-term current distribution. The long-term current statistics was assumed with a 3-parameter Weibull distribution. The fatigue damage was estimated for the span lengths obtained from the screening criteria for various conditions. Sample calculations show the effect of axial force for various boundary conditions. Comparisons with conventional criteria are included.