• Title/Summary/Keyword: Simple beam

Search Result 1,062, Processing Time 0.029 seconds

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Theoretical and experimental serviceability performance of SCCs connections

  • Maghsoudi, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.39 no.2
    • /
    • pp.241-266
    • /
    • 2011
  • The Self Compacting Concrete, SCC is the new generation type of concrete which is not needed to be compacted by vibrator and it will be compacted by its own weight. Since SCC is a new innovation and also the high strength self compacting concrete, HSSCC behavior is like a brittle material, therefore, understanding the strength effect on the serviceability performance of reinforced self compacting concretes is critical. For this aim, first the normal and high strength self compacting concrete, NSSCC and HSSCC was designed. Then, the serviceability performance of reinforced connections consisting of NSSCC and HSSCC were investigated. Twelve reinforced concrete connections (L = 3 m, b = 0.15 m, h = 0.3 m) were simulated, by this concretes, the maximum and minimum reinforcement ratios ${\rho}$ and ${\rho}^{\prime}$ (percentage of tensile and compressive steel reinforcement) are in accordance with the provision of the ACI-05 for conventional RC structures. This study was limited to the case of bending without axial load, utilizing simple connections loaded at mid span through a stub (b = 0.15 m, h = 0.3 m, L = 0.3 m) to simulate a beam-column connection. During the test, concrete and steel strains, deflections and crack widths were measured at different locations along each member. Based on the experimental readings and observations, the cracked moment of inertia ($I_{cr}$) of members was determined and the results were compared with some selective theoretical methods. Also, the flexural crack widths of the members were measured and the applicability for conventional vibrated concrete, as for ACI, BS and CSA code, was verified for SCCs members tested. A comparison between two Codes (ACI and CSA) for the theoretical values cracking moment is indicate that, irrespective of the concrete strength, for the specimens reported, the prediction values of two codes are almost equale. The experimental cracked moment of inertia $(I_{cr})_{\exp}$ is lower than its theoretical $(I_{cr})_{th}$ values, and therefore theoretically it is overestimated. Also, a general conclusion is that, by increasing the percentage of ${\rho}$, the value of $I_{cr}$ is increased.

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.

The Influence of the Aspect Ratio on the Natural Frequency of the Specially Orthotropic Laminated Plates (특별직교이방성 적층판의 고유진동수에 대한 형상비의 영향)

  • Han, Bong Koo;Kim, Duck Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.219-225
    • /
    • 2011
  • Advanced composite structures are too difficult for such design engineers for construction and some simple but accurate enough methods are necessary. The simply supported laminated plates are analyzed by the specially orthotropic laminates theory. This method, however, may be too difficult for some practising engineers. In this paper, the result of analysis for such plate by means of the beam theory with unit width is reported. The plate aspect ratio considered is from 1 : 1 to 1 : 5. Most of the bridge and building slabs on girders have large aspect ratios. For such cases further simplification is possible by neglecting the effect of the longitudinal moment terms($M_x$) on the relevant partial differential equations of equilibrium. In this paper. the influence of the aspect ratio on the natural frequency of the specially orthotropic laminated plates is studied and it is concluded that the method used is sufficiently accurate for engineering purposes. The result of this paper can be used for simply supported laminated plates analysis.

Preparation of Nanocolumnar In2O3 Thin Films for Highly Sensitive Acetone Gas Sensor

  • Han, Soo Deok;Song, Young Geun;Shim, Young-Seok;Lee, Hae Ryong;Yoon, Seok-Jin;Kang, Chong-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.383-387
    • /
    • 2016
  • Well-ordered nanocolumnar indium oxide ($In_2O_3$) thin films have been successfully fabricated by glancing angle deposition (GAD) using an e-beam evaporator. Nanocolumnar structures have a porous and large surface area with a narrow neck between nanocolumns, which allows them to detect minute amounts of gases. The nanocolumnar $In_2O_3$ thin films were fabricated by the GAD process at five different positions, viz. top, bottom, center, left, and right in a four inch substrate holder. There was a divergence in the thickness and the base resistance of each sensor. However, all the sensors exhibited extremely high sensitivity that was greater than $10^3$ times the change in electrical resistance after being exposed to 50 ppm of acetone gas at $300^{\circ}C$. Furthermore, the nanocolumnar $In_2O_3$ sensors displayed an extremely low detection limit (1.2 ppb) in dry atmosphere as well as in high humidity (80%). We demonstrated that the GAD nanocolumnar $In_2O_3$ sensors have an enormous potential for many applications owing to their particularly simple and reliable fabrication process.

LACBED Observation of Strain Fields due to Precipitates, Especially S-Phase Particles in Al-Cu-Mg Alloy (Al-Cu-Mg 합금의 석출입자, 특히 S-상 입자들에 의한 변형장의 LACBED 관찰)

  • Kim, Hwang-Su
    • Applied Microscopy
    • /
    • v.37 no.2
    • /
    • pp.123-133
    • /
    • 2007
  • The strain fields due to precipitates, especially S-phase $(Al_2CuMg)$ particles in Al-2.5Cu-1.5Mg wt.% alloy were first investigated with Large Angle Convergent Beam Electron Diffraction (LACBED) method. The work involves LACBED pattern simulations to estimate possibly the strength of the strain fields. To do this the morphology of S-particle was optimized as a cylindrical shape with $a_s$ axis, and the displacement vector of strain fields was assumed to be perpendicular to $a_s$ axis. With this simple model the reasonable fittings between the observed patterns of the strain fields and simulations were obtained. And in the early aging stage of the alloy the significant strain fields were not observed. As a result of this study it is expected that the strain fields due to S-phase precipitates in the stage with maximum hardness would make a complex networks to possibly contribute to hardiness of the alloy.

A Study on the Optimal Design Method of Reinforced Concrete Two Way Slabs (Direct Method에 의한 鐵筋콘크리트 二方向슬라브의 最適設計에 관한 硏究)

  • Kim, Yong-Hee;Lyu, Hong-Leal;Park, Moon-Ho
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.26 no.2
    • /
    • pp.97-105
    • /
    • 1984
  • We have, at present, found some studies on the optimum design of reinforced concrete about the simple slab but very few about the multi-story and multi-span slab. The aim of this study is to make a optimum design of coalesced beam and column slab constructure. Some results of the evaluation by using the optimalized algorithm that was developed in this study are as follows. 1. Slab was mainly restricted by the constraint of effective depth, bending moment, and minimum steel ratio; especially the effective depth was the preceding crifical constraint. In the optimum design of slab, therefore, the constraint about the minimum thickness should be surely considered. 2. This optimum design is good economy as much as some 3.4&~6.2% compared with the conventional design method. 3. In most case, it was converged by 3 to 6 iteratin regardless of the highest or lowest value and only in case of N=1 and case 1, there is a little oscillation after the 3rd iteration but it makes no difference in taking either the highest or lowest value because the range of oscillation is low as much as about 1.2% of the total construction cost. 4. In this study the result seeking for constraints that make no difference in the least cost design shows that shear stress and maximum steel ration may not be considered in it. 5. Bending moment was converged by one time iteration regardless of the initial value, while steel ratio, in most case, by two times because both bending moment and steel ratio are the fuction of effective depth.

  • PDF

Analysis of Ride Comfort for an Automobile with flexible Vehicle Body (차체의 유연성을 고려한 차량 승차감 해석)

  • Kim Junghoon;Choi Kwangsung;Park Sungyong;Lee Jangmoo;Kang Sangwook;Kang Juseok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2005
  • In most researches on the ride comfort analysis of passenger vehicles, the flexibility of the vehicle body has been not considered as an important factor, because the resonance frequencies of the vehicle body related to pitching, yawing and rolling motions are below 10Hz while the resonance frequencies of the vehicle body related to the flexibility are above 20Hz approximately. Nevertheless, the paper shows that the consideration of the local flexibility (or local stiffness) of the 4 corners on which shock absorbers are mounted influences the ride comfort. A simple beam model is devised to qualitatively examine the effect of the change of the local stiffness of the vehicle body on the ride comfort. Based on the results obtained from the analysis of the one-dimensional model, multi-body dynamic analysis considering the flexibility of the vehicle body is performed using ADAMS and MSC/NASTRAN. Natural frequencies and mode shapes computed by MSC/NASTRAN are used as input data for multi-body dynamic analysis in ADAMS. Through simulations using ADAMS, it has been found that the ride comfort can be improved by changing the local stiffness of the vehicle body and that the simulation results agree with experiment results.

Finite Element Model Updating of Simple Beam Considering Boundary Conditions (경계조건을 고려한 단순보의 유한요소모델개선)

  • Kim, Se-Hoon;Park, Young-Soo;Kim, Nam-Gyu;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • In this present study, in order to update the finite element model considering the boundary conditions, a method has been proposed. The conventional finite element model updating method, updates the finite element model by using the dynamic characteristics (natural frequency, mode shape) which can be estimated from the ambient vibration test. Therefore, prediction of the static response of an actual structure is difficult. Furthermore, accurate estimation of the physical properties is relatively hard. A novel method has been proposed to overcome the limitations of conventional method. Initially, the proposed method estimates the rotational spring constant of a finite element model using the deflection of structure and the rotational displacement of support measurements. The final updated finite element model is constructed by estimating the material properties of the structure using the finite element model with updated rotational spring constant and the dynamic characteristics of the structure. The proposed finite element model updating method is validated through numerical simulation and compared with the conventional finite element model updating method.

Experimental Analysis of Prestressed Approach Slab Behavior (프리스트레스가 도입된 접속슬래브의 실험적 거동 분석)

  • Park, Hee-Beom;Eum, In-Sub;Kim, Seong-Min
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-164
    • /
    • 2010
  • This research was conducted to analyze the behavior of Single-PTAS (Single Post-Tensioned Approach Slab) under tensioning and environmental loads by performing field tests when the demonstration Single-PTAS was being constructed. The temperature measurement sensors were installed at different depths, and the displacements in the approach slab under environmental loads and tensioning were measured using displacement transducers. As an experimental result, an abrupt change in the longitudinal displacement due to tensioning was not observed. The daily temperature change in the approach slab was negligible where the depth is over about 35cm. The temperature gradient in the approach slab adjacent to bridge was smaller than that adjacent to pavement. The patterns and magnitudes of vertical displacements were directly related to the temperature gradient at the measuring location. The behavior of Single-PTAS was very similar to that of concrete pavement. Therefore, a new design methodology for approach slabs is needed to include the pavement concept and to overcome drawback of current design procedures based on the simple beam concept.