• 제목/요약/키워드: Simple Sequence Repeat

검색결과 196건 처리시간 0.071초

Inter Simple Sequence Repeat (ISSR) Polymorphism and Its Application in Mulberry Genome Analysis

  • Vijayan Kunjupillai
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제10권2호
    • /
    • pp.79-86
    • /
    • 2005
  • Molecular markers have increasingly been used in plant genetic analysis, due to their obvious advantages over conventional phenotypic markers, as they are highly polymorphic, more in number, stable across different developmental stages, neutral to selection and least influenced by environmental factors. Among the PCR based marker techniques, ISSR is one of the simplest and widely used techniques, which involves amplification of DNA segment present at an amplifiable distance in between two identical microsatellite repeat regions oriented in opposite direction. Though ISSR markers are dominant like RAPD, they are more stable and reproducible. Because of these properties ISSR markers have recently been found using extensively for finger printing, pohylogenetic analysis, population structure analysis, varietal/line identification, genetic mapping, marker-assisted selection, etc. In mulberry (Morus spp.), ISSR markers were used for analyzing phylogenetic relationship among cultivated varieties, between tropical and temperate mulberry, for solving the vexed problem of identifying taxonomic positions of genotypes, for identifying markers associated with leaf yield attributing characters. As ISSR markers are one of the cheapest and easiest marker systems with high efficiency in generating polymorphism among closely related varieties, they would play a major role in mulberry genome analysis in the future.

Development of Novel Microsatellite Markers for Strain-Specific Identification of Chlorella vulgaris

  • Jo, Beom-Ho;Lee, Chang Soo;Song, Hae-Ryong;Lee, Hyung-Gwan;Oh, Hee-Mock
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권9호
    • /
    • pp.1189-1195
    • /
    • 2014
  • A strain-specific identification method is required to secure Chlorella strains with useful genetic traits, such as a fast growth rate or high lipid productivity, for application in biofuels, functional foods, and pharmaceuticals. Microsatellite markers based on simple sequence repeats can be a useful tool for this purpose. Therefore, this study developed five novel microsatellite markers (mChl-001, mChl-002, mChl-005, mChl-011, and mChl-012) using specific loci along the chloroplast genome of Chlorella vulgaris. The microsatellite markers were characterized based on their allelic diversities among nine strains of C. vulgaris with the same 18S rRNA sequence similarity. Each microsatellite marker exhibited 2~5 polymorphic allele types, and their combinations allowed discrimination between seven of the C. vulgaris strains. The two remaining strains were distinguished using one specific interspace region between the mChl-001 and mChl-005 loci, which was composed of about 27 single nucleotide polymorphisms, 13~15 specific sequence sites, and (T)n repeat sites. Thus, the polymorphic combination of the five microsatellite markers and one specific locus facilitated a clear distinction of C. vulgaris at the strain level, suggesting that the proposed microsatellite marker system can be useful for the accurate identification and classification of C. vulgaris.

Genome-Wide SSR 마커를 이용한 주요 산지별 참당귀의 유전다양성 분석 (Genetic Diversity of Angelica gigas Nakai Collected in Korea using Genome-Wide SSR Markers)

  • 정대희;박윤미;김기윤;박홍우;전권석;김만조;길진수;이이;엄유리
    • 한국약용작물학회지
    • /
    • 제27권6호
    • /
    • pp.376-382
    • /
    • 2019
  • Background: Angelica gigas Nakai has been used as an herbal medicine in Eastern Asia for treating disorders in women for a long time. To date there are no studies on the genetic diversity of A. gigas. The present study aimed to study the genetic diversity of A. gigas variants using genome-wide simple sequence repeat (SSR) markers. Methods and Results: The genetic diversity of 199 variants of A. gigas cultivated in of different regions, was analyzed using 5 genome-wide SSR markers. The results revealed that the genetic variants were very diverse, and genetic analysis using the 5 SSR markers revealed high diversity among the variants. Conclusions: It is expected that the development of the true Angleical cultivar, by studying the system and group selection, can be achieved by genetic analysis using the developed markers, for generating a genetically fixed lineage and group selection.

SSR 마커를 이용한 국내산 인삼 품종 및 국외 수집종의 유전적 다양성 분석 (Analysis of Genetic Polymorphism of Korean Ginseng Cultivars and Foreign Accessions using SSR Markers)

  • 방경환;조익현;정종욱;김영창;이제완;서아연;박종현;김옥태;현동윤;김동휘;차선우
    • 한국약용작물학회지
    • /
    • 제19권5호
    • /
    • pp.347-353
    • /
    • 2011
  • In this study, simple sequence repeat (SSR) analyses were utilized for evaluation of genetic diversity and discrimination of 17 accessions. Five cultivars, which were developed from Korea, and 12 foreign accessions, which were collected from China, Japan, Russia and USA, were evaluated by nine markers out of 22 SSR markers. A total of 39 alleles were detected, ranging from 2 to 8, with an average of 4.3 alleles per locus. The expected heterozygosity and PIC values were 0.627 and 0.553, with a range from 0.21 (GB-PG-078) to 0.76 (GB-PG-142) and from 0.19 (GB-PG-078) to 0.70 (GB-PG-142), respectively. Four makers out of nine SSR markers, GB-PG-026, GB-PG-043, GB-PG-142 and GB-PG-177, were selected as key factors for discrimination of Korean ginseng cultivars and foreign accessions. All of Korean ginseng cultivars and foreign accessions were individually by the combination of four SSR markers. Consequently, the SSR markers developed in this study may prove useful for the evaluation of genetic diversity and discrimination of Korean ginseng cultivars and foreign accessions.

Development of Molecular Markers for Xanthomonas axonopodis Resistance in Soybean

  • Kim Ki-Seung;Van Kyujung;Kim Moon Young;Lee Suk-Ha
    • 한국작물학회지
    • /
    • 제49권5호
    • /
    • pp.429-433
    • /
    • 2004
  • A single recessive gene, rxp, controls the bacterial leaf pustule (BLP) resistance in soybean and in our previous article, it has been mapped on linkage group (LG) D2 of molecular genetic map of soybean. A total of 130 recombinant inbred lines (RILs) from a cross between BLP-resistant SS2-2 and BLP-susceptible Jangyeobkong were used to identify molecular markers linked to rxp. Fifteen simple sequence repeat (SSR) markers on LG D2 were screened to construct a genetic map of rxp locus. Only four SSR markers, Satt135, Satt372, Satt448, and Satt486, showed parental polymorphisms. Using these markers, genetic scaffold map was constructed covering 26.2cM. Based on the single analysis of variance, Satt372 among these four SSR markers was the most significantly associated with the resistance to BLP. To develop new amplified fragment length polymorphism (AFLP) marker linked to the resistance gene, bulked segregant analysis (BSA) was employed. Resistance and susceptible bulks were made by pooling equal amount of genomic DNAs from ten of each in the segregating population. A total of 192 primer combinations were used to identify specific bands to the resistance, selecting three putative AFLP markers. These AFLP markers produced the fragment present in SS2-2 and the resistant bulk, and not in Jangyeobkong and the susceptible bulk. Linkage analysis revealed that McctEact97 $(P=0.0004,\;R^2=14.67\%)$ was more significant than Satt372, previously reported as the most closely linked marker.