• 제목/요약/키워드: Simple Sequence Repeat

검색결과 196건 처리시간 0.026초

Identification and characterization of QTLs and QTL interactions for Macro- and Micro-elements in rice (Oryza sativa L.) grain

  • Qin, Yang;Kim, Suk-Man;Sohn, Jae-Keun
    • Journal of Plant Biotechnology
    • /
    • 제35권4호
    • /
    • pp.257-263
    • /
    • 2008
  • Improvement of the macro- and micro-elements density of rice (Oryza sativa L.) is gradually becoming a new breeding objective. In this study, the genomic regions associated with potassium, calcium, magnesium and iron content in rice grain were identified and characterized by using a doubled haploid (DH) population. Fifty-six simple sequence repeat (SSR) and one hundred and twelve sequence tagged site (STS) markers were selected to construct the genetic linkage map of the DH population with a full length of 1808.3cM scanning 12 rice chromosomes. Quantitative trait loci (QTLs) were detected, and QTL effects and QTL interactions were calculated for five traits related to macro- and micro-elements in the DH population from a cross between 'Samgang' (Tongil) and 'Nagdong' (Japonica). Twelve QTLs were located on five chromosomes, consisting of two QTLs for potassium, three QTLs for calcium, two QTLs for magnesium, one QTL for iron content and four QTLs for the ratio of magnesium to potassium (Mg/K). Among them, qca1.1 was detected on chromosome 1 with an LOD value of 8.58 for calcium content. It explained 27% of phenotype variations with increasing effects from 'Samgang' allele. Furthermore, fifteen epistatic combinations with significant interactions were observed on ten chromosomes for five traits, which totally accounted for 4.19% to 12.72% of phenotype variations. The screening of relatively accurate QTLs will contribute to increase the efficiency of marker-assisted selection (MAS), and to accelerate the establishment of near-isogenic lines (NILs) and QTL pyramiding.

Marker-Assisted Foreground and Background Selection of Near Isogenic Lines for Bacterial Leaf Pustule Resistant Gene in Soybean

  • Kim, Kil-Hyun;Kim, Moon-Young;Van, Kyu-Jung;Moon, Jung-Kyung;Kim, Dong-Hyun;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • 제11권4호
    • /
    • pp.263-268
    • /
    • 2008
  • Bacterial leaf pustule (BLP) caused by Xanthomonas axonopodis pv. glycines is a serious disease to make pustule and chlorotic haloes in soybean [Glycine max (L). Merr.]. While inheritance mode and map positions of the BLP resistance gene, rxp are known, no sequence information of the gene was reported. In this study, we made five near isogenic lines (NILs) from separate backcrosses (BCs) of BLP-susceptible Hwangkeumkong $\times$ BLP-resistant SS2-2 (HS) and BLP-susceptible Taekwangkong$\times$ SS2-2 (TS) through foreground and background selection based on the four-stage selection strategy. First, 15 BC individuals were selected through foreground selection using the simple sequence repeat (SSR) markers Satt486 and Satt372 flanking the rxp gene. Among them, 11 BC plants showed the BLP-resistant response. The HS and TS lines chosen in foreground selection were again screened by background selection using 118 and 90 SSR markers across all chromosomes, respectively. Eventually, five individuals showing greater than 90% recurrent parent genome content were selected in both HS and TS lines. These NILs will be a unique biological material to characterize the rxp gene.

  • PDF

Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate

  • Mahmoud, Amer F.;Hassan, Mohamed I.;Amein, Karam A.
    • The Plant Pathology Journal
    • /
    • 제31권4호
    • /
    • pp.402-413
    • /
    • 2015
  • Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

Development of EST-SSRs and Assessment of Genetic Diversity in Germplasm of the Finger Millet, Eleusine coracana (L.) Gaertn.

  • Wang, Xiaohan;Lee, Myung Chul;Choi, Yu-Mi;Kim, Seong-Hoon;Han, Seahee;Desta, Kebede Taye;Yoon, Hye-myeong;Lee, Yoonjung;Oh, Miae;Yi, Jung Yoon;Shin, Myoung-Jae;Kim, Kyung-Min
    • 한국작물학회지
    • /
    • 제66권4호
    • /
    • pp.443-451
    • /
    • 2021
  • Finger millet (Eleusine coracana) is widely cultivated in tropical regions worldwide owing to its high nutritional value. Finger millet is more tolerant against biotic and abiotic stresses such as pests, drought, and salt than other millet crops; therefore, it was proposed as a candidate crop to adapt to climate change in Korea. In 2019, we used expressed sequence tag simple sequence repeat (EST-SSR) markers to evaluate the genetic diversity and structure of 102 finger millet accessions from two geographical regions (Africa and South Asia) to identify appropriate accessions and enhance crop diversity in Korea. In total, 40 primers produced 116 alleles, ranging in size from 135 to 457 bp, with a mean polymorphism information content (PIC) of 0.18225. Polymorphism was detected among the 40 primers, and 13 primers were found to have PIC values > 0.3. Principal coordinate and phylogenetic analyses, based on the combined data of both markers, grouped the finger millet accessions according to their respective collection areas.Therefore, the 102 accessions were classified into two groups, one from Asia and the other from Africa. We have conducted an in-depth study on the finger millet landrace pedigree. By sorting out and using the molecular characteristics of each pedigree, it will be useful for the management and accession identification of the plant resource. The novel SSR markers developed in this study will aid in future genetic analyses of E. coracana.

Development of SCAR Markers for Korean Wheat Cultivars Identification

  • Son, Jae-Han;Kim, Kyeong-Hoon;Shin, Sanghyun;Choi, Induk;Kim, Hag-Sin;Cheong, Young-Keun;Lee, Choon-Ki;Lee, Sung-Il;Choi, Ji-Yeong;Park, Kwang-Geun;Kang, Chon-Sik
    • Plant Breeding and Biotechnology
    • /
    • 제2권3호
    • /
    • pp.224-230
    • /
    • 2014
  • Amplified fragment length polymorphism (AFLP) is a molecular marker technique based on DNA and is extremely useful in detection of high polymorphism between closely related genotypes like Korean wheat cultivars. Six sequence characterized amplified regions (SCARs) have been developed from inter simple sequence repeat (ISSR) analysis which enabled the identification and differentiation of 13 Korean wheat cultivars from the other cultivars. We used six combinations of primer sets in our AFLP analysis for developing additional cultivar-specific markers in Korean wheat. Fifty-eight of the AFLP bands were isolated from EA-ACG/MA-CAC, EA-AGC/MA-CTG and EA-AGG/MA-CTA primer combinations. Of which 40 bands were selected to design SCAR primer pairs for Korean wheat cultivar identification. Three of 58 amplified primer pairs, KWSM006, KWSM007 and JkSP, enabled wheat cultivar identification. Consequently, 23 of 32 Korean wheat cultivars were classified by eight SCAR marker sets.

Transferability of EST SSR-Markers from Foxtail Millet to Barnyard Millet (Echinochloa esculenta)

  • Myung Chul Lee;Yu-Mi Choi;Myoung-Jae Shin;Hyemyeong Yoon;Seong-Hoon Kim
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2020년도 춘계학술대회
    • /
    • pp.45-45
    • /
    • 2020
  • A large number of expressed sequence tags (ESTs) in public databases have provided an opportunity for the systematic development of simple sequence repeat (SSR) markers. EST-SSRs derived from conserved coding sequences show considerable cross-species transferability in related species. In the present study, we assessed the utility of foxtail millet EST-SSRs in barnyard millet. A total of 312 EST-SSRs of foxtail millet were tested using 84 Echinochloa crus-galli germplasm accessions; a high rate of transferability (62%) and 46 primer sets (13%) were shown the polymorphism in barnyard millet. The 13% of functional EST-SSRs) was demonstrated between cereals and barnyard millet. SSR marker profile data were scored for the computation of pairwise distances as well as a Neighbor Joining (NJ) tree of all the genotypes. The averaged values of gene diversity (HE) and polymorphism information content (PIC) were 0.213 and 0.179 within populations, respectively. The 84 barnyard millet germplasm accessions were divided into five different groups, which agreed well with their geographical origins. The exotic 12 accessions of India type barnyard millet (E. frumentacea) were all separated form Korean local collection genotype. The present results provide evidence of divergence between cultured and wild type barnyard, as a millet and grass. The polymorphic SSR markers indicated in this study were of great value in analysis of genetic diversity that can be further used for crop improvement through breeding.

  • PDF

SRAP과 SSR 마커를 이용한 국내 육성 팔레놉시스 품종의 유전적 다양성 분석과 품종판별 (Analysis of Genetic Diversity and Identification of Domestic Bred Phalaenopsis Varieties Using SRAP and SSR Markers)

  • 박부희;박용진;김미선;이영란;박필만;이동수;예병우
    • 원예과학기술지
    • /
    • 제31권3호
    • /
    • pp.337-343
    • /
    • 2013
  • 본 연구의 목적은 SSR과 SRAP 마커 시스템을 이용하여 팔레놉시스 14품종 간 유전적 거리를 비교하고, SSR 마커를 이용하여 품종 간 구분을 하기 위한 것이다. 전체적으로 111개의 SSR 프라이머와 30조합의 SRAP primer를 먼저 스크리닝하였다. 국립원예특작과학원에서 보존중인 국내 육성품종을 포함한 14품종의 팔레놉시스에서 12개의 SSR 프라이머와 30조합의 SRAP 프라이머에서 높은 다형성을 보였다. 증폭된 DNA 단편들은 acrylamide gel에서 분리시킨 후 silver staining 방법으로 검출하였다. SSR 마커 55개와 SRAP 419개로, 총 474개의 마커를 획득하였으며 이를 유전적 다양성 분석에 사용하였다. 다형성 밴드들은 MVSP 3.1프로그램을 이용하여 유전적 유사도와 UPGMA clustering 분석을 위해 scoring 되었다. 14 팔레놉시스 품종은 SRAP과 SSR 분석을 통해 각각 0.683과 0.66의 유사도 지수에서 3그룹으로 분류되었다. 또한 SSR 20번과 22번만으로도 이들 육성 품종을 구분할 수 있었다. 이 결과는, SSR 분석은 팔레놉시스 품종간 구분에 효과적이고 SRAP은 염기서열의 정보가 없을 때 유전적 다양성 분석에 유용하다는 것을 보여준다. 이번 연구된 SSR과 SRAP 마커들은 팔레놉시스의 유전자형 판별, 유전자원 보존, 유전적 근연관계를 분석하는데 유용한 기술이 될 것이다.

꼬막(Tegillarca granosa)의 유전적 다양성 분석을 위한 드래프트 게놈분석과 마이크로새틀라이트 마커 발굴 (Genome Survey and Microsatellite Marker Selection of Tegillarca granosa)

  • 김진무;이승재;조은아;최은경;김현진;이정식;박현
    • 한국해양생명과학회지
    • /
    • 제6권1호
    • /
    • pp.38-46
    • /
    • 2021
  • 꼬막 종류 중 하나인 Tegillarca granosa는 해양 이매패류로서 한국, 중국, 일본 등의 중요한 수산 자원 중 하나이다. 꼬막의 염색체 수는 2n=38로 알려져 있지만, 유전체의 크기와 유전 정보에 대해서는 아직 명확하게 알려져 있지 않다. 꼬막의 유전체 크기 예측을 위하여 NGS Illumina HiSeq 플랫폼을 이용하여 얻은 짧은 DNA 서열 정보를 통하여 in silico 분석으로 유전체 크기를 분석하였다. 그 결과 꼬막의 유전체 크기는 770.61 Mb로 예측되었다. 이후 MaSuRCA assembler를 통하여 드래프트 게놈 조립 작업을 수행하고, QDD pipeline을 이용하여 SSR (simple sequence repeats) 분석을 수행하였다. 꼬막의 유전체로부터 43,944개의 SSR을 발굴하였으며, 다이-뉴클레오타이드(di-nucleotide) 69.51%, 트라이-뉴클레오타이드(tri-nucleotide) 16.68%, 테트라-뉴클레오타이드(tetra-nucleotide) 12.96%, 펜타-뉴클레오타이드(penta-nucleotide) 0.82% 그리고 헥사-뉴클레오타이드(hexa-nucleotide) 0.03%로 구성되었다. 이후 꼬막의 유전적 다양성 연구에 활용할 수 있는 100개의 마이크로새틀라이트 마커의 프라이머 세트를 선별하였다. 앞으로 이번 연구를 통해서, 꼬막의 집단유전학적 연구와 유전적 다양성을 규명하는데 도움이 될 것이며, 나아가 동종들 간의 원산지 분류를 알아낼 수 있을 것이다.

The Development and Selection of SSR Markers for Identification of Peanut (Arachis hypogaea L.) Varieties in Korea

  • Han, Sang-Ik;Bae, Suk-Bok;Ha, Tae Joung;Lee, Myong-Hee;Jang, Ki-Chang;Seo, Woo-Duck;Park, Geum-Yong;Kang, Hang-Won
    • 한국육종학회지
    • /
    • 제43권2호
    • /
    • pp.133-138
    • /
    • 2011
  • The groundnut or cultivated peanut (Arachis hypogaea L.) in Korea consists of 36 domestic varieties which have been developed and registered as cultivars for the public during last 25 years. To screen and identify of Korean peanut varieties and genetic resources, we present a simple and reliable method. A methodology based on simple sequence repeat (SSR) markers developed and widely used for prominent gene identification and variety discrimination. For identification of those 36 Korean peanut varieties, 238 unique peanut SSR markers were selected from some previously reported results, synthesized and used for polymerase chain reaction (PCR). Data were taken through acryl amide gel electrophoresis and changed into proper formats for application of data mining analysis using Biomine (all-in-one functional genomics data mining program). Consequently, twelve SSR primers were investigated and revealed the differences between those 36 varieties. These primer pairs amplified 27 alleles with an average of 2.3 allele per primer pair. In addition, those results showed genetic relationship by classification method within 36 varieties. The approach described here could be applied to monitoring of our varieties and adapting to peanut breeding program.

핵치환에 의한 cloning, stem cell, 그리고 효소 telomerase (Mammalian Cloning by Nuclear transfer, Stem Cell, and Enzyme Telomerase)

  • 한창열
    • 식물조직배양학회지
    • /
    • 제27권6호
    • /
    • pp.423-428
    • /
    • 2000
  • In 1997 when cloned sheep Dolly and soon after Polly were born, it had become head-line news because in the former the nucleus that gave rise to the lamb came from cells of six-year-old adult sheep and in the latter case a foreign gene was inserted into the donor nucleus to make the cloned sheep produce human protein, factor IX, in e milk. In the last few years, once the realm of science fiction, cloned mammals especially in livestock have become almost commonplace. What the press accounts often fail to convey, however, is that behind every success lie hundreds of failures. Many of the nuclear-transferred egg cells fail to undergo normal cell divisions. Even when an embryo does successfully implant in the womb, pregnancy often ends in miscarriage. A significant fraction of the animals that are born die shortly after birth and some of those that survived have serious developmental abnormalities. Efficiency remains at less than one % out of some hundred attempts to clone an animal. These facts show that something is fundamentally wrong and enormous hurdles must be overcome before cloning becomes practical. Cloning researchers now tent to put aside their effort to create live animals in order to probe the fundamental questions on cell biology including stem cells, the questions of whether the hereditary material in the nucleus of each cell remains intact throughout development, and how transferred nucleus is reprogrammed exactly like the zygotic nucleus. Stem cells are defined as those cells which can divide to produce a daughter cell like themselves (self-renewal) as well as a daughter cell that will give rise to specific differentiated cells (cell-differentiation). Multicellular organisms are formed from a single totipotent stem cell commonly called fertilized egg or zygote. As this cell and its progeny undergo cell divisions the potency of the stem cells in each tissue and organ become gradually restricted in the order of totipotent, pluripotent, and multipotent. The differentiation potential of multipotent stem cells in each tissue has been thought to be limited to cell lineages present in the organ from which they were derived. Recent studies, however, revealed that multipotent stem cells derived from adult tissues have much wider differentiation potential than was previously thought. These cells can differentiate into developmentally unrelated cell types, such as nerve stem cell into blood cells or muscle stem cell into brain cells. Neural stem cells isolated from the adult forebrain were recently shown to be capable of repopulating the hematopoietic system and produce blood cells in irradiated condition. In plants although the term$\boxDr$ stem cell$\boxUl$is not used, some cells in the second layer of tunica at the apical meristem of shoot, some nucellar cells surrounding the embryo sac, and initial cells of adventive buds are considered to be equivalent to the totipotent stem cells of mammals. The telomere ends of linear eukaryotic chromosomes cannot be replicated because the RNA primer at the end of a completed lagging strand cannot be replaced with DNA, causing 5' end gap. A chromosome would be shortened by the length of RNA primer with every cycle of DNA replication and cell division. Essential genes located near the ends of chromosomes would inevitably be deleted by end-shortening, thereby killing the descendants of the original cells. Telomeric DNA has an unusual sequence consisting of up to 1,000 or more tandem repeat of a simple sequence. For example, chromosome of mammal including human has the repeating telomeric sequence of TTAGGG and that of higher plant is TTTAGGG. This non-genic tandem repeat prevents the death of cell despite the continued shortening of chromosome length. In contrast with the somatic cells germ line cells have the mechanism to fill-up the 5' end gap of telomere, thus maintaining the original length of chromosome. Cem line cells exhibit active enzyme telomerase which functions to maintain the stable length of telomere. Some of the cloned animals are reported prematurely getting old. It has to be ascertained whether the multipotent stem cells in the tissues of adult mammals have the original telomeres or shortened telomeres.

  • PDF