• Title/Summary/Keyword: Simple Rotor

Search Result 342, Processing Time 0.028 seconds

Vibration Analysis of Cracked Rotor (균열 회전체의 진동해석)

  • Jun, Oh-Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.925-934
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterative method. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

  • PDF

Vibration Analysis of Flexible Rotor Having a Breathing Crack (개폐균열이 존재하는 유연 회전체의 진동해석)

  • Jun, Oh-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1137-1147
    • /
    • 2005
  • The dynamic response due to the unbalance and crack and the quasi-static response due to gravity are analytically derived based on the complex transfer matrix. The additional slope is expressed as function of the bending moment at crack position based on the fracture mechanics concept, and inversely the bending moment is expressed as function of the additional slope at the crack Position. At each angle step during the shaft revolution, the additional slope and bending moment are calculated by an iterativemethod. The transient behavior is considered by introducing Fourier series expansion concept for the additional slope. Simulation is carried out for a simple rotor similar to those available in the literature and comparison of the basic crack behavior is shown. Using the additional slope, the cracked rotor behavior is explained with the crack depth increased: the magnitude of the additional slope increases and the closed crack duration during a revolution decreases as the crack depth increases. The direction of unbalance is also shown as a factor to affect the crack breathing. Whirl orbits are shown near the sub-critical speed ranges of the rotor.

Optimal Design of Nonlinear Squeeze Film Damper Using Hybrid Global Optimization Technique

  • Ahn Young-Kong;Kim Yong-Han;Yang Bo-Suk;Ahn Kyoung-Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1125-1138
    • /
    • 2006
  • The optimal design of the squeeze film damper (SFD) for rotor system has been studied in previous researches. However, these researches have not been considering jumping or nonlinear phenomena of a rotor system with SFD. This paper represents an optimization technique for linear and nonlinear response of a simple rotor system with SFDs by using a hybrid GA-SA algorithm which combined enhanced genetic algorithm (GA) with simulated annealing algorithm (SA). The damper design parameters are the radius, length and radial clearance of the damper. The objective function is to minimize the transmitted load between SFD and foundation at the operating and critical speeds of the rotor system with SFD which has linear and nonlinear unbalance responses. The numerical results show that the transmitted load of the SFD is greatly reduced in linear and nonlinear responses for the rotor system.

The Design of Rotor Bars of Single-Phase Line-Start Permanent Magnet Motor for Improving Starting Characteristics (단상 유도동기전동기의 기동 특성 개선을 위한 회전자 바 형상 설계)

  • Lee Chul-kyu;Kwon Soon-hyo;Yang Byung-yull;Kwon Byung-il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.8
    • /
    • pp.370-376
    • /
    • 2005
  • The single-phase induction motor is simple and durable, but the efficiency is low. Therefore, electric motors like HLDC and LSPM(line-start permanent magnet motor) that use the permanent magnet have been studied. The most advantages of single-phase LSPM is having the same stator as the stator of the single-phase induction motor and permanent magnets are just inserted in the squirrel cage rotor of the single-phase induction motor. But the characteristics of single-phase LSPM synchronous motor has very complex characteristics until the synchronization and if the design is not suitable, the single-phase LSPM synchronous motor cannot be synchronized. We designed a single-phase LSPM using the same stator and winding as the conventional single-phase induction motor, but newly designed the permanent magnets considering air gap magnetic flux density. The transient characteristics of the single-phase LSPM is not good because of a magnetic breaking torque, however, it can be improved by redesigning the rotor bars. We are proposed the design method of rotor bar for the single-phase LSPM to start softly and to make synchronization easily.

Simple Sensorless Control of Interior Permanent Magnet Synchronous Motor Using PLL Based on Extended EMF

  • Han, Dong Yeob;Cho, Yongsoo;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.711-717
    • /
    • 2017
  • This paper proposes an improved sensorless control to estimate the rotor position of an interior permanent magnet synchronous motor. A phase-locked loop (PLL) is used to obtain the phase angle of the grid. The rotor position can be estimated using a PLL based on extended electromotive force (EEMF) because the EEMF contains information about the rotor position. The proposed method can reduce the burden of calculation. Therefore, the control period is decreased. The simulation and experimental results confirm the effectiveness and performance of the proposed method.

Development of a Sensorless Drive for Brushless DC Motor (브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • Yeo, H.G.;Lee, K.W.;Park, J.B.;Kim, T.H.;Huang, Jian;Yoo, Ji-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2095-2097
    • /
    • 1997
  • This paper describes a indirect sensing method for the rotor flux position of interior permanent magnet (IPM) brushless DC motors. The phase inductance of an IPM motor varies appreciably according to the rotor position. The waveform characteristics of the terminal voltage of IPM brushless DC motors is analysed and a simple and practical method for indirect sensing of the rotor position is proposed. A compact sensorless drive is implemented and tested using a 87c196mc 16-bit microcomputer. The experimental results show the validity of the proposed method and the drive works well from 500 to 7,200rpm.

  • PDF

A Study on the Linear Encoder for the high performance Oil Off Angle control of SRM (SRM의 고성능 온, 오프 각 제어를 위한 선형 엔코더에 관한 연구)

  • 이동희;박성준;이명재;한성현;백운보;이희섭
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.190-198
    • /
    • 2002
  • In switched reluctance motor(SRM) drive, it is necessary to synchronize the stator phase excitation with the rotor position. Therefore the rotor position information is an essential. Usually optical encoders or resolvers are used to provide the rotor position information. These sensors are expensive and are not suitable for high speed operation. In general, the accuracy of the switching angles is dependent upon the resolution of the encoder and the sampling period of the microprocessor. But the region of high speed, switching angles are fluctuated back and forth from the preset values, witch are cause by the sampling period of the microprocessor. Therefore, the low cost linear encoder suitable for the practical and stable SRM drive is proposed and the control algorithm to provide the switching signals using the simple digital logic circuit is also presented in this paper It is verified from the experiments that the proposed encoder and logic controller can be a powerful candidate for the practical low cost SRM drive.

  • PDF

Measurement of Dynamic Coefficients of Air Foil Bearing for High Speed Rotor by Using Impact Test (임팩트 테스트를 이용한 초고속 회전체용 공기 포일 베어링의 동특성 계수 측정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.5-10
    • /
    • 2011
  • MTG(Micro turbine generator) operating at 400,000 rpm is under development and the impact test rig to measure the dynamic stiffness and damping coefficient of air foil bearing for high speed rotor is presented in this study. The stiffness and damping coefficient of air foil bearing depending on the rotational speed can be measured easily and effectively by using the simple configuration of impact test rig which is composed of air gun, gap sensors and high speed motor. The estimation results of stiffness and dampling coefficient using least square estimation method is presented as well.

A Study on the Sensorless Control of Synchronous Reluctance Motor using Trigonometric Function (삼각함수 계산을 이용한 동기형 릴럭턴스 전동기의 센서리스 제어 연구)

  • Ahn, Joon-Seon;Lee, Geun-Ho;Kim, Sol
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.30-37
    • /
    • 2011
  • Recently, SynRM has been focused by many researchers and there has been a lot of works for the industrial application of SynRM. In spite of several merits of SynRM, the information of exact rotor position is also required to perform the precise torque control, which causes the increment of cost and demerits SynRM to use in industrial application. Therefore, we studied sensorless control algorithm for the torque control of SynRM to overcome the demerits. Specially we proposed simple algorithm to estimate rotor position using trigonometric function, verified with computer simulation and experiment.

Computing EMF of Salient Pole Rotor Type Single Phase SRM (돌극형 회전자 단상 SRM의 유도기전력 산출)

  • Kim, Jun-Ho;Lee, Eun-Woong;Oh, Young-Woong;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.868-870
    • /
    • 2001
  • Salient pole rotor type single phase SRM(switched reluctance motor) can be use axial direction magnetic flux and radial direction magnetic flux at the same time. Then, it has higher energy density per unit volume and can be lessened the shaft length of motor or exciting magnetic force. Additionally, it's durability is good because it is simple structure and driving device. Prototype of Salient pole rotor type single phase SRM was fabricated by using parameters of three phase SRM and 3D FEM analysis. Also, driving device was fabricated for prototype. Speed and torque characteristic was confirmed through the experiments, and flux linkage, which is important parameter of SRM for generating torque, was measured. The induction emf was calculated by using ideal inductance graph and current graph. Calculated emf and measured emf was compared for confirming loss of prototype in this paper.

  • PDF