• Title/Summary/Keyword: Simple Enclosure

Search Result 44, Processing Time 0.025 seconds

An Acoustical Analysis on the Transformer Enclosure in Power Plants (발전소 변압기 밀폐구조의 음향해석)

  • 이준신;김연환;손석만
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.244-249
    • /
    • 1997
  • The enclosure with a small opened area is extensively used in power plants to reduce the propagating noise from transformers. The radiation impedance associated with the location and width of the opened area, and the geometric configurations of internal acoustic field is very important to determine the basic acoustic characteristics of this partial enclosure. In this study, two-dimensional rectangular chambers with opened areas are investigated to examine the acoustic properties of the enclosure. The mode expansions of the physical variables defined on boundary surfaces are introduced to derive a simple algebraic equation. The acoustic characteristics can be easily predicted by this analytical approach, and the results well agree with physical grounds. Physical concepts as results of this work will be helpful to use the partial enclosure as a noise control element.

  • PDF

An Experimental Study on Heat Transfer Characteristics of a Thermal Diode Type Enclosure with a Guide Vane

  • Kim, Suk-Hyun;Jang, Young-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.4
    • /
    • pp.10-16
    • /
    • 2001
  • An experimental study for free convective heat transfer in a thermal diode type enclosure is presented. The thermal diode is a device which allows heat to be transferred in one direction by convection due to density difference of the fluid, and consists of a rectangular-paralle-logrammic enclosure with a guide vane. It is used as heat collection system of solar energy due to its simple construction and low cost. Experimental parameters were guide vane thickness, the inclination angles of the parallelogrammic enclosure, and the lengths of the rectangular enclosure part. The parameter range of the flux Rayleigh numbers was $2.4\times{10}^8$~$9.8\times{10}^8$. The heat transfer rate of this system was shown 10~47% higher than that of other earlier research results without the guide vane. The correlation for fixed $\phi=60^\circ$ was obtained, Nu=0.0037(Ra^*)^{0.429}(d^*)^ {0.050}(Lr/H)^{0.0415}$.

  • PDF

A simple formula for insertion loss prediction of large acoustical enclosures using statistical energy analysis method

  • Kim, Hyun-Sil;Kim, Jae-Seung;Lee, Seong-Hyun;Seo, Yun-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.894-903
    • /
    • 2014
  • Insertion loss prediction of large acoustical enclosures using Statistical Energy Analysis (SEA) method is presented. The SEA model consists of three elements: sound field inside the enclosure, vibration energy of the enclosure panel, and sound field outside the enclosure. It is assumed that the space surrounding the enclosure is sufficiently large so that there is no energy flow from the outside to the wall panel or to air cavity inside the enclosure. The comparison of the predicted insertion loss to the measured data for typical large acoustical enclosures shows good agreements. It is found that if the critical frequency of the wall panel falls above the frequency region of interest, insertion loss is dominated by the sound transmission loss of the wall panel and averaged sound absorption coefficient inside the enclosure. However, if the critical frequency of the wall panel falls into the frequency region of interest, acoustic power from the sound radiation by the wall panel must be added to the acoustic power from transmission through the panel.

Simple Design Method of the Engine Enclosure Considering Cooling and Noise Reduction (냉각과 소음을 고려한 엔진 차폐 구조의 간편한 설계 방법)

  • 최재웅;김관엽;이희준
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.184-188
    • /
    • 1999
  • Noise regulation of heavy construction machinery is getting stricter: 3 dB per every 4 year in European community. To meet this requirement many engineers have adopted the enclosing structures with thick absorbing materials and small opening, This increases internal temperature of the enclosure which have engine systems such as electric equipment that are vulnerable to heat, and engine block and muffler that can be regarded as heat sources. So noise control engineers have to consider a coupling problem: combining heat balance and noise reduction. This paper describes this approach by introducing simple heat transfer theory and SEA. The enclosing system of the loader whose enclosing structure consists of two rooms is investigated to show the validity of this method. The results represent that the simple heat transfer theory can be useful to estimate cooling performance when it is linked together by the back pressure theory in duct system. and the radiated noise can also be estimated by the SEA. Therefore a designer can use these approaches to define the opening ratio of an enclosure and the mass flow rate of air considering radiating noise.

  • PDF

Effects of Stabilizing Thermal Gradients on the Natural Convection in Rectangular Enclosures due to Lateral Temperature Difference (양단온도차에 의한 직각용기내 자연대류에 미치는 안정온도구배의 영향)

  • Kim, Moo Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.365-375
    • /
    • 1991
  • Confined natural convection due to lateral temperature difference in rectangular enclosures was studied numerically and experimentally for the insulated and the constant temperature enclosures. In the case of insulated enclosure, the flow pattern and heat transfer modes are rather simple depending mainly upon Rayleigh number. In the case of isothermal enclosure, however, the phenomena of flow and heat transfer are somewhat complex and interesting due to the stable thermal gradients and various circumstances resulted from four wall temperature conditions. As a dimensionless variable, to describe properly the flow and heat transfer phenomena in the isothermal enclosure, temperature difference ratio ${\Delta}T_v/{\Delta}T_H$ is newly introduced and this parameter seems to be appropriate in the analysis of results on the effect of stabilizing thermal gradient.

  • PDF

A Study of Natural Convection Heat Transfer in a Composed Rectangular-Parallelogrammic Enclosure with a Guide Vane (안내판을 가진 사각 및 평행사변형이 조합된 복합밀폐공간에서의 자연대류 열전달에 관한 연구)

  • Jang, Young-Keun;Cho, Woon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.619-626
    • /
    • 2001
  • The present experimental and numerical study investigate flow and natural convection heat transfer characteristics of a composed rectangular-parallelogrammic enclosure with a guide vane. The governing equations for the two-dimensional, laminar, natural convection process in an enclosure are discretized by the control volume approach which insures the conservative characteristics to be satisfied in the calculation domain, and solved by a modified SIMPLE algorithm. The momentum and energy equations are coupled through the buoyancy term. In this results of experimental study, the natural convection heat transfer characteristics was well coincided with conclusions of other earlier experimental researches and numerical analysis.

Effect of Horizontal Conducting Walls and Partitions on Two-Dimensional Laminar Natural Convective Heat Transfer in a Rectangular Enclosure (수평전도벽과 간막이가 직4각형 밀폐공간내에서의 2차원 층류 자연대류에 미치는 영향)

  • Lee Taik Sik;Lee Sang Woo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.204-215
    • /
    • 1987
  • Laminar natural convective heat transfer within a two-dimensional rectangular enclosure with horizontal conducting walls and partitions was investigated by numerical analysis and experiment. The enclosure consists of two isothermal vertical walls and two adiabatic horizontal walls. This combined heat transfer problem of conduction and natural convection was solved using finite difference method with SIMPLE algorithm, and temperature distribu-tions in the air filled enclosure was obtained using Mach-Zehnder interferometer. Good agree-ment was obtained between the predicted and measured results. The effect of geometric parameters and thermal properties on heat transfer was studied far Grashof numbers in range, $1\times10^4\;{\leqslant}\;G^r\;{\leqslant}\;6.4\times10^5.$ It was found that both velocity and temperature fields were in-fluenced significantly by thermal conductivity of the conducting walls and the partitions, and by geometry of partitions.

  • PDF

Low-frequency Noise Reduction in an Enclosure by using a Helmholtz Resonator Array (헬름홀츠 공명기 배열을 이용한 인클로저 내부의 저주파 소음 저감)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.756-762
    • /
    • 2012
  • A method of the low-frequency noise reduction in an enclosure by using an array of Helmholtz resonator is presented. An integral form of equation, which represents the acoustical coupling between the internal sound field and the resonator array, is formulated so that the boundary element method can be applied to solve the coupling problem. It is shown that the resonator array on the surface of the enclosure can be regarded as impedance patches on the boundary element. Experiments on a simple enclosure acoustically coupled with an array of resonators are conducted to verify the method. The predicted noise reduction by the boundary element method shows good agreement with the measured one. The effects of the resistance of resonators as well as the number of resonators on the noise reduction are demonstrated. As a practical example, the presented method is applied to the payload fairing of a space launcher with resonator arrays. It is demonstrated that the resistance of resonators affects significantly the required number of resonators to achieve a desired noise reduction.

Experimental Study on the Thermal Performance of Piezoelectric Fan in an Enclosure (밀폐공간 내에서 압전세라믹 냉각홴의 열성능에 대한 실험적 연구)

  • Park, Sang-Hee;Choi, Moon-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1173-1180
    • /
    • 2006
  • This study deals with fluid flow and heat transfer around a module cooled by forced air flow generated by a piezoelectric(PZT) fan in an enclosure. The fluid flows were generated by a flexible PZT fan which deflects inside a fluid transport system of comparatively simple structure mounted on a PCB in an enclosure($270\times260\times90mm^3$). Input voltages of 30V and 40V, and a resonance frequency of 28Hz were used to vibrate the cooling fan. Input power to the module was 4W. The height in an enclosure was changed 23$\sim$43mm. The fluid flow around the module was visualized by using PIV system. The temperature distributions around a heated module were visualized by using liquid crystal film. As the height in an enclosure and the input voltage of PZT fan increased, the cooling effect of module using a PZT fan increased. We found that the flow type was T- or Y-shape and the cooling effect was increased by the wake generated by a PZT fan.

Smoke Movement by a Fire in an Enclosure (밀폐 공간내에서의 화재에 의한 연기의 유동)

  • 노재성;유홍선;김충익;윤명오
    • Fire Science and Engineering
    • /
    • v.10 no.3
    • /
    • pp.10-18
    • /
    • 1996
  • In foreign country such as USA and Japan, considerable research has been done regarding the spread of smoke in room of fire involvement by using computer. but, in our country it has not been, so, this paper presents a detailed qualitative description of phenomena which occure during typical fire scenarios through numberical analysis. The governing equations are solved by using FVM method with non-staggered grid. The SIMPLE method for pressure-velocity couple and power-law scheme for convention terms are used. It shows that a plume is formed, hot plume gases impinge on the ceiling and they spread across it. then, it eventually reaches the bounding walls of the enclosure. It takes 20s for smoke to fill the enclosure.

  • PDF