• Title/Summary/Keyword: Simple CFD Example

Search Result 4, Processing Time 0.021 seconds

Development of Simple Example of CFD Course in Mechanical Engineering Curriculum (I) (Laminar Pipe Flow) (기계공학교육과정에서의 전산유체동역학의 기초예제개발 (I) (수평 원관의 층류 유동))

  • Lee, Sung-Riong;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.72-80
    • /
    • 2018
  • With the ever increasing advances in computers and their computing power, computational fluid dynamics(CFD) has become an essential engineering tool in the design and analysis of engineering applications. Accordingly, many universities have developed and implemented a course on CFD for undergraduate students. On the other hand, many professors have used industrial examples supplied by computational analysis software companies as CFD examples. This makes many students think of CFD as difficult and confusing. This paper presents a simple CFD example used in the department of mechanical design engineering of Kangwon National University and shows its effectiveness. Most students answered that a simple CFD example is more comprehensive than an industrial example. Therefore, it is necessary to develop simple computational analysis problems in the engineering education field.

Study on a Method of Considering the Fluid Induced External Force in Structural Dynamic Analysis (구조동역학 해석 시 유체유동에 의한 외력을 고려하는 방법에 관한 연구)

  • Seo, Seok;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.661-665
    • /
    • 2000
  • A method of considering the fluid induced external force in structural dynamic analysis is presented in this study. The fluid induced pressure distribution around a structure in discrete number of orientation. and velocity is calculated by using a CFD code and tabulated as resultant forces and moments in a database. These forces and moments are interpolated and employed as external forces during the dynamic analysis of structure. The reliability and usefulness of the present method is validated by using a simple discrete system example through transient analysis. The flutter speed is obtained and compared to the analytical solution. Comparing to the method in which structural dynamic and fluid flow analyses are performed simultaneously, the present method is very efficient to save computational effort.

  • PDF

Humidity Effect on the Hydrogen Re-circulation Ejector Performance (고습의 흡입 유체일 때 이젝터의 성능 변화)

  • JeGal, Seung;Song, Seung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2589-2593
    • /
    • 2008
  • In a fuel cell vehicle using polymer electrolyte membrane fuel cell(PEMFC), hydrogen is over-supplied to gain higher stack efficiency. So it is needed considering fuel efficiency to re-circulate hydrogen which is not reacted in stack. And to re-circulate hydrogen, a blower or an ejector is used. Ejector re-circulation system has several merits compared with blower system, for example no parasite energy, simple structure and no lubrication system. But the secondary flow of an ejector in fuel cell vehicle, has high humidity because of crossover problem in stack. Therefore in this paper, ejector is designed by 1-D modeling and CFD with the primary and secondary flow of hydrogen. And the ejector which has the primary and secondary flow of air, is designed to have the same Reynolds number and Mach number at the nozzle exit as the hydrogen ejector's. And this air ejector is tested while the humidity of the secondary flow is varied.

  • PDF

NUMERICAL STUDY ON THE UNSTEADY FLOW PHYSICS OF INSTECTS' FLAPPING FLIGHT USING FLUID-STRUCTURE INTERACTION (FSI를 활용한 2차원 곤충날개 주위 유동장 해석)

  • Lee, K.B.;Kim, J.H.;Kim, C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.151-158
    • /
    • 2009
  • To implement the insects' flapping flight for developing flapping MAVs(micro air vehicles), the unsteady flow characteristics of the insects' forward flight is investigated. In this paper, two-dimensional FSI(Fluid-Structure Interaction) simulations are conducted to examine realistic flow features of insects' flapping flight and to examine the flexibility effects of the insect's wing. The unsteady incompressible Navier-Stokes equations with an artificial compressibility method are implemented as the fluid module while the dynamic finite element equations using a direct integration method are employed as the solid module. In order to exchange physical information to each module, the common refinement method is employed as the data transfer method. Also, a simple and efficient dynamic grid deformation technique based on Delaunay graph mapping is used to deform computational grids. Compared to the earlier researches of two-dimensional rigid wing simulations, key physical phenomena and flow patterns such as vortex pairing and vortex staying can still be observed. For example, lift is mainly generated during downstroke motion by high effective angle of attack caused by translation and lagging motion. A large amount of thrust is generated abruptly at the end of upstroke motion. However, the quantitative aspect of flow field is somewhat different. A flexible wing generates more thrust but less lift than a rigid wing. This is because the net force acting on wing surface is split into two directions due to structural flexibility. As a consequence, thrust and propulsive efficiency was enhanced considerably compared to a rigid wing. From these numerical simulations, it is seen that the wing flexibility yields a significant impact on aerodynamic characteristics.

  • PDF