Communications for Statistical Applications and Methods
/
제13권3호
/
pp.719-732
/
2006
A set of clustering algorithms with proper weight on the formulation of distance which extend to mixed numeric and multiple binary values is presented. A simple matching and Jaccard coefficients are used to measure similarity between objects for multiple binary attributes. Similarities are converted to dissimilarities between i th and j th objects. The performance of clustering algorithms with balancing weight on different similarity measures is demonstrated. Our experiments show that clustering algorithms with application of proper weight give competitive recovery level when a set of data with mixed numeric and multiple binary attributes is clustered.
The purpose of this study was to extract emotional dimensions from Korean adjectives relating to apartment noise. Noise-related 296 Korean adjectives were extracted from a dictionary and three evaluators selected 96 adjectives from those by removing very similar ones in meaning. Two types of 96 7-point scales were conducted to college students for evaluation, whether each adjective describes apartment noise appropriately. From this evaluation, 28 adjectives having above 4.5 points were selected. Again, 8 different types of 7-point scales on 378 adjective pairs(28 x 27/2) were administrated to separate college students to evaluate the degree of similarity between 28 adjectives. Based upon this evaluation, 14 adjectives were finally selected and scores on similarity sere analyzed through two different statistical analyses (Multi-dimensional scale and Cluster analysis). The results showed that three dimensions (displeasure, sensitivity and perceived loudness) exist in peoples' emotional response state to apartment noise. The previous studies have treated annoyance and sensitivity as separate measures to noise. However, this study showed that these two factors were on the same emotional dimension labeled as 'sensitivity' In addition, new dimension, labeled as 'displeasure', was found.
기존의 문서 군집화 기법 NSTC은 문서 군집화 과정 내에서 TF-IDF를 이용하여 문서간 유사도를 측정한다. 본 논문에서는 TF-IDF가 아닌, 공통 Phrase의 관계 그래프를 이용한 새로운 문서간 유사도 측정을 제안한다. 이 방법은 문서 집합 내의 공통 Phrase들의 관계를 나타낸 관계 그래프를 통해 공통 Phrase의 가중치를 부여하는 방법을 제시한다. 또한 실험을 통해 NSTC와 비교하여 본 논문에서 제안한 문서간 유사도 측정 기법이 문서 군집화에 더욱 효과적임을 보였다.
In huge video databases, the effective video content indexing method is required. While manual indexing is the most effective approach to this goal, it is slow and expensive. Thus automatic indexing is desirable and recently various indexing tools for video databases have been developed. For efficient video content indexing, the similarity measure is an important factor. This paper presents new similarity measures between frames and proposes a new algorithm to index video content using Kullback-Leibler distance defined between two histograms. Experimental results show that the proposed algorithm using Kullback-Leibler distance gives remarkable high accuracy ratios compared with several conventional algorithms to index video content.
The metric defined on the domain deformation space better measures the similarity between bounded and continuous signals for the purpose of classification via the metric distances between signals. In this paper, a modified domain deformation theory is introduced for one-dimensional signal classification. A new metric defined on a modified domain deformation for measuring the distance between signals is employed. By introducing a newly defined metric space via the newly defined Integra-Normalizer, the assumption that domain deformation is applicable only to continuous signals is removed such that any kind of integrable signal can be classified. The metric on the modified domain deformation has an advantage over the $L^2$ metric as well as the previously introduced domain deformation does.
항공영상을 이용하여 수치표면자료와 같은 3차원 자료를 자동으로 제작하기 위해서는 영상정합이 반드시 필요하다. 최근 사용되고 있는 항공 디지털 프레임 영상은 과거의 아날로그 영상에 비해 폐색지역이 적은 고중복도 다중 스트립 영상으로 촬영되기에 용이하다. 최근 다중 스트립 영상을 이용한 다중영상정합 기법에 대한 연구가 많이 이루어지고 있으며, 특히 각 영상에서 추출된 점(point feature)이나 형상(linear feature)의 유사성 측정 방법에 대한 연구가 진행되고 있다. 본 연구에서는 수직궤적 기반 다중영상정합을 대상으로 영역기반 유사성 측정 방법으로 SNCC(Sum of Normalized Cross-Correlation)와 SSD(Sum of Squared-Difference) 방법을 비교 분석하였다. 또한 영역기반 유사성 측정에 필요한 요소로 영상의 화소값, 화소값 기울기 강도, 화소값과 화소값 기울기 강도 평균을 각각 사용하여 결과를 비교하였다. 이 외에도 영역기반 유사성 측정에서 중요한 요소인 기준 윈도우의 크기를 비정규 적응형 기준 윈도우 방법과 정규 적응형 윈도우 방법을 적용하여 결과를 비교 분석하였다. 실험을 위하여 사용된 항공영상은 ZI Imaging 사의 DMC (Digital Modular Camera)에 의해 종중복도는 80%, 횡중복도는 60%로 촬영되었으며, 3개의 스트립으로 구성되었다. 다양한 방법으로 실험을 수행한 결과에 따르면 유사성 측정 방법으로는 SNCC, 유사성 측정 요소로는 화소값과 화소값 기울기 강도 평균, 그리고 비정규 적응형 기준 윈도우가 수직궤적 기반 다중영상정합의 영역기반 유사성 측정에 가장 적합하다는 것을 확인하였다.
게임은 소프트웨어 특성상 출시 후 사용자들의 반응을 빠르게 파악하여 개선하는 것이 중요하다. 하지만 구글 플레이 앱 스토어 등 사용자들이 게임을 다운로드하고 리뷰를 올릴 수 있는 대부분의 사이트들은 게임 리뷰에 대한 매우 제한적이고 모호한 분류 기능만을 제공한다. 따라서 본 논문에서는 사용자들이 사이트에 올린 게임 리뷰를 보다 명확하고 운영에 유용한 주제들로 자동 분류하는 시스템을 개발한다. 본 논문에서 개발한 시스템은 리뷰에 포함된 단어들을 대표적인 단어 임베딩 모델인 word2vec을 사용하여 벡터들로 변환하고, 이 벡터들과 각 주제 간 유사도를 측정하여 해당 리뷰를 관련된 주제로 분류한다. 특히 분류 성능에 직접적인 영향을 미치는 벡터 간 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 벡터 간 유사도 측정 방법인 유클리디안 유사도, 코사인 유사도, 확장된 자카드 유사도의 성능을 실제 데이터를 사용하여 비교하였다. 또한 어떤 리뷰가 둘 이상의 주제에 해당하는 경우를 위해 임계값에 기반한 다중 분류 방법을 사용하였다. 구글 플레이 앱스토어의 실제 데이터를 사용한 실험 결과 본 시스템은 95%까지의 정확도를 보임을 확인하였다.
정서표상에 대한 논의 중 첫 번째는 정서가 차원에서의 정서표상, 두 번째는 감각양상에 따른 정서표상을 설명하는 것이다. 선행연구에서는 정서표상을 설명하기 위해 정서가 모델(부호 정서가, 비부호 정서가), 감각양상에 따른 정서표상 모델(감각보편성, 감각특징성)들이 제시되었다. 본 연구에서는 최근에 등장한 ASMR을 이용하여 기존 연구에서 제시된 모델들을 비교하여 어떠한 모델이 정서표상을 잘 설명하는지 확인하고자 하였다. 본 연구에서 사용한 자료는 Kim & Kim(2022)에서 수집한 3개의 정서유형(부정, 중립, 긍정) 및 2개의 감각양상(청각, 시청각)으로 구분된 ASMR 자극에 대한 정서평정자료를 사용하였다. 이후, 해당 자료에 대한 다차원척도법, 표상 유사성 분석 및 이원 변량분석, 다중회귀분석 및 이원 변량분석을 실시하였다. 다차원척도법 결과, 비부호 정서가에 비해 부호 정서가, 감각특징성에 비해 감각보편성에서 자극의 정서유형 간 구분이 잘 이루어졌다. 다차원척도법 결과와 유사하게, 표상 유사성 분석 및 다중회귀분석 결과 또한 비부호 정서가에 비해 부호 정서가, 감각특징성에 비해 감각보편성이 유의하게 정서표상을 잘 설명하였다. 이러한 결과는 정서가 모델 중 1차원의 양극단에 긍정과 부정이 위치하는 모델이 ASMR에 대한 정서표상을 잘 설명하며, 감각양상과 상관없이 정서표상이 일관적임을 시사한다.
In this paper, we propose a design process of 'personalized' classification with soft computing techniques. Based on human's thinking way, a construction methodology for personalized classifier is mentioned. Here, two fuzzy similarity measures and ensemble of classifiers are effectively used. As one of the possible applications, facial expression recognition problem is discussed. The numerical result shows that the proposed method is very useful for on-line learning, reusability of previous knowledge and so on.
This paper is concerned about the classification of objects together with muti-attributes such as remote sensing image data by using tolerance rough set. To produce more reliable relations from given attributes in the data, we define new similarity measures by using scaling. Our Method will be applied to classify multi-spectral image data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.