• Title/Summary/Keyword: Similarity Searches

Search Result 57, Processing Time 0.025 seconds

A Design for Efficient Similar Subsequence Search with a Priority Queue and Suffix Tree in Image Sequence Databases (이미지 시퀀스 데이터베이스에서 우선순위 큐와 접미어 트리를 이용한 효율적인 유사 서브시퀀스 검색의 설계)

  • 김인범
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.613-624
    • /
    • 2003
  • This paper proposes a design for efficient and accurate retrieval of similar image subsequences using the multi-dimensional time warping distance as similarity evaluation tool in image sequence database after building of two indexing structures implemented with priority queue and suffix tree respectively. Receiving query image sequence, at first step, the proposed method searches the candidate set of similar image subsequences in priory queue index structure. If it can not get satisfied results, it retrieves another candidate set in suffix tree index structure at second step. The using of the low-bound distance function can remove the dissimilar subsequence without false dismissals during similarity evaluating process between query image sequence and stored sequences in two index structures.

  • PDF

Shape-Based Subsequence Retrieval Supporting Multiple Models in Time-Series Databases (시계열 데이터베이스에서 복수의 모델을 지원하는 모양 기반 서브시퀀스 검색)

  • Won, Jung-Im;Yoon, Jee-Hee;Kim, Sang-Wook;Park, Sang-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.10D no.4
    • /
    • pp.577-590
    • /
    • 2003
  • The shape-based retrieval is defined as the operation that searches for the (sub) sequences whose shapes are similar to that of a query sequence regardless of their actual element values. In this paper, we propose a similarity model suitable for shape-based retrieval and present an indexing method for supporting the similarity model. The proposed similarity model enables to retrieve similar shapes accurately by providing the combination of various shape-preserving transformations such as normalization, moving average, and time warping. Our indexing method stores every distinct subsequence concisely into the disk-based suffix tree for efficient and adaptive query processing. We allow the user to dynamically choose a similarity model suitable for a given application. More specifically, we allow the user to determine the parameter p of the distance function $L_p$ when submitting a query. The result of extensive experiments revealed that our approach not only successfully finds the subsequences whose shapes are similar to a query shape but also significantly outperforms the sequence search.

Efficient Subsequence Searching in Sequence Databases : A Segment-based Approach (시퀀스 데이터베이스를 위한 서브시퀀스 탐색 : 세그먼트 기반 접근 방안)

  • Park, Sang-Hyun;Kim, Sang-Wook;Loh, Woong-Kee
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.344-356
    • /
    • 2001
  • This paper deals with the subsequence searching problem under time-warping in sequence databases. Our work is motivated by the observation that subsequence searches slow down quadratically as the average length of data sequences increases. To resolve this problem, the Segment-Based Approach for Subsequence Searches (SBSS) is proposed. The SBASS divides data and query sequences into a series of segments, and retrieves all data subsequences that satisfy the two conditions: (1) the number of segments is the same as the number of segments in a query sequence, and (2) the distance of every segment pair is less than or equal to a tolerance. Our segmentation scheme allows segments to have different lengths; thus we employ the time warping distance as a similarity measure for each segment pair. For efficient retrieval of similar subsequences, we extract feature vectors from all data segments exploiting their monotonically changing properties, and build a spatial index using feature vectors. Using this index, queries are processed with the four steps: (1) R-tree filtering, (2) feature filtering, (3) successor filtering, and (4) post-processing. The effectiveness of our approach is verified through extensive experiments.

  • PDF

A Space-Efficient Inverted Index Technique using Data Rearrangement for String Similarity Searches (유사도 검색을 위한 데이터 재배열을 이용한 공간 효율적인 역 색인 기법)

  • Im, Manu;Kim, Jongik
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1247-1253
    • /
    • 2015
  • An inverted index structure is widely used for efficient string similarity search. One of the main requirements of similarity search is a fast response time; to this end, most techniques use an in-memory index structure. Since the size of an inverted index structure usually very large, however, it is not practical to assume that an index structure will fit into the main memory. To alleviate this problem, we propose a novel technique that reduces the size of an inverted index. In order to reduce the size of an index, the proposed technique rearranges data strings so that the data strings containing the same q-grams can be placed close to one other. Then, the technique encodes those multiple strings into a range. Through an experimental study using real data sets, we show that our technique significantly reduces the size of an inverted index without sacrificing query processing time.

Fast Fractal Image Compression Using DCT Coefficients and Its Applications into Video Steganography (DCT계수를 이용한 고속 프랙탈 압축 기법과 화상 심층암호에의 응용)

  • Lee, Hye-Joo;Park, Ji-Hwan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 1997
  • The fractal image compression partitions an original image into blocks of equal size and searches a do-main block having self-similarity. This method of compression achieves high compression ratio because it is unnecessary to transmit the additional codebook to receiver and it provides good quality of reconstructed images. In spite of these advantages, this method has a drawback in which encoding time increase due to a complicated linear transformation for determining a similar-domain block. In this paper, a fast fractal image compression method is proposed by decreasing the number of transformation usings AC(alternating current) coefficients of block. The proposed method also has a good quality as compared with the well-known fractal codings. Furthermore, method also has a good quality as apply the video steganography that can conceal an important secret data.

  • PDF

Efficient Inverted List Search Technique using Bitmap Filters (비트맵 필터를 이용한 효율적인 역 리스트 탐색 기법)

  • Kwon, In-Teak;Kim, Jong-Ik
    • The KIPS Transactions:PartD
    • /
    • v.18D no.6
    • /
    • pp.415-422
    • /
    • 2011
  • Finding similar strings is an important operation because textual data can have errors, duplications, and inconsistencies by nature. Many algorithms have been developed for string approximate searches and most of them make use of inverted lists to find similar strings. These algorithms basically perform merge operations on inverted lists. In this paper, we develop a bitmap representation of an inverted list and propose an efficient search algorithm that can skip unnecessary inverted lists without searching using bitmap filters. Experimental results show that the proposed technique consistently improve the performance of the search.

Stochastic Non-linear Hashing for Near-Duplicate Video Retrieval using Deep Feature applicable to Large-scale Datasets

  • Byun, Sung-Woo;Lee, Seok-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4300-4314
    • /
    • 2019
  • With the development of video-related applications, media content has increased dramatically through applications. There is a substantial amount of near-duplicate videos (NDVs) among Internet videos, thus NDVR is important for eliminating near-duplicates from web video searches. This paper proposes a novel NDVR system that supports large-scale retrieval and contributes to the efficient and accurate retrieval performance. For this, we extracted keyframes from each video at regular intervals and then extracted both commonly used features (LBP and HSV) and new image features from each keyframe. A recent study introduced a new image feature that can provide more robust information than existing features even if there are geometric changes to and complex editing of images. We convert a vector set that consists of the extracted features to binary code through a set of hash functions so that the similarity comparison can be more efficient as similar videos are more likely to map into the same buckets. Lastly, we calculate similarity to search for NDVs; we examine the effectiveness of the NDVR system and compare this against previous NDVR systems using the public video collections CC_WEB_VIDEO. The proposed NDVR system's performance is very promising compared to previous NDVR systems.

The Analysis of Genome Database Compaction based on Sequence Similarity (시퀀스 유사도에 기반한 유전체 데이터베이스 압축 및 영향 분석)

  • Kwon, Sunyoung;Lee, Byunghan;Park, Seunghyun;Jo, Jeonghee;Yoon, Sungroh
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.4
    • /
    • pp.250-255
    • /
    • 2017
  • Given the explosion of genomic data and expansion of applications such as precision medicine, the importance of efficient genome-database management continues to grow. Traditional compression techniques may be effective in reducing the size of a database, but a new challenge follows in terms of performing operations such as comparison and searches on the compressed database. Based on that many genome databases typically have numerous duplicated or similar sequences, and that the runtime of genome analyses is normally proportional to the number of sequences in a database, we propose a technique that can compress a genome database by eliminating similar entries from the database. Through our experiments, we show that we can remove approximately 84% of sequences with 1% similarity threshold, accelerating the downstream classification tasks by approximately 10 times. We also confirm that our compression method does not significantly affect the accuracy of taxonomy diversity assessments or classification.

The Development of the User-Customizable Favorites-based Smart Phone UX/UI Using Tap Pattern Similarity (탭 패턴 유사도를 이용한 사용자 맞춤형 즐겨찾기 스마트 폰 UX/UI개발)

  • Kim, Yeongbin;Kwak, Moon-Sang;Kim, Euhee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.8
    • /
    • pp.95-106
    • /
    • 2014
  • In this paper, we design a smart phone UX/UI and a tap pattern recognition algorithm that can recognize tap patterns from a tapping user's fingers on the screen, and implement an application that provides user-customizable smart phones's services from the tap patterns. A user can generate a pattern by tapping the input pad several times and register it by using a smart phone's favorite program. More specifically, when the user inputs a tap pattern on the input pad, the proposed application searches a stored similar tap pattern and can run a service registered on it by measuring tap pattern similarity. Our experimental results show that the proposed method helps to guarantee the higher recognition rate and shorter input time for a variety of tap patterns.

Similar Question Search System for online Q&A for the Korean Language Based on Topic Classification (온라인가나다를 위한 주제 분류 기반 유사 질문 검색 시스템)

  • Mun, Jung-Min;Song, Yeong-Ho;Jin, Ji-Hwan;Lee, Hyun-Seob;Lee, Hyun Ah
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.3
    • /
    • pp.263-278
    • /
    • 2015
  • Online Q&A for the National Institute of the Korean Language provides expert's answers for questions about the Korean language, in which many similar questions are repeatedly posted like other Q&A boards. So, if a system automatically finds questions that are similar to a user's question, it can immediately provide users with recommendable answers to their question and prevent experts from wasting time to answer to similar questions repeatedly. In this paper, we set 5 classes of questions based on its topic which are frequently asked, and propose to classify questions to those classes. Our system searches similar questions by combining topic similarity, vector similarity and sequence similarity. Experiment shows that our method improves search correctness with topic classification. In experiment, Mean Reciprocal Rank(MRR) of our system is 0.756, and precision for the first result is 68.31% and precision for top five results is 87.32%.