• Title/Summary/Keyword: Similarity Algorithm

Search Result 1,152, Processing Time 0.022 seconds

Pixel value prediction algorithm using three directional edge characteristics and similarity between neighboring pixels

  • Jung, Soo-Mok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.10 no.1
    • /
    • pp.61-64
    • /
    • 2018
  • In this paper, a pixel value prediction algorithm using edge components in three directions is proposed. There are various directional edges and similarity between adjacent pixels in natural images. After detecting the edge components in the x-axis direction, the y-axis direction, and the diagonal axis direction, the pixel value is predicted by applying the detected edge components and similarity between neighboring pixels. In particular, the predicted pixel value is calculated according to the intensity of the edge component in the diagonal axis direction. Experimental results show that the proposed algorithm can effectively predict pixel values. The proposed algorithm can be used for applications such as reversible data hiding, reversible watermarking to increase the number of embedded data.

Sentence Similarity Measurement Method Using a Set-based POI Data Search (집합 기반 POI 검색을 이용한 문장 유사도 측정 기법)

  • Ko, EunByul;Lee, JongWoo
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.12
    • /
    • pp.711-716
    • /
    • 2014
  • With the gradual increase of interest in plagiarism and intelligent file content search, the demand for similarity measuring between two sentences is increasing. There is a lot of researches for sentence similarity measurement methods in various directions such as n-gram, edit-distance and LSA. However, these methods have their own advantages and disadvantages. In this paper, we propose a new sentence similarity measurement method approaching from another direction. The proposed method uses the set-based POI data search that improves search performance compared to the existing hard matching method when data includes the inverse, omission, insertion and revision of characters. Using this method, we are able to measure the similarity between two sentences more accurately and more quickly. We modified the data loading and text search algorithm of the set-based POI data search. We also added a word operation algorithm and a similarity measure between two sentences expressed as a percentage. From the experimental results, we observe that our sentence similarity measurement method shows better performance than n-gram and the set-based POI data search.

A Similarity Join Algorithm Using a Median as a Filter (중앙값을 필터로 이용한 유사도 조인 알고리즘)

  • Park, Jong Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.2
    • /
    • pp.71-76
    • /
    • 2015
  • In similarity join processing, a general technique employs a generation-verification framework, which includes two phases: the first phase generates a set of candidate pairs from a collection of records; and the second phase verifies each candidate pair by computing real similarity. In order to reduce the number of candidate pairs in the verification phase, the median of one record of each candidate pair is used as a filter in this paper to test whether the other record can has the proper number of overlapped tokens. We propose a similarity join algorithm with the median filter, and show that the proposed algorithm has better performance in execution time than recent algorithms without the filter through extensive experiments on real-world datasets.

An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition (물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정)

  • Kim, Dong-Gi;Lee, Seong-Gyu;Lee, Moon-Wook;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.2
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

A Local Alignment Algorithm using Normalization by Functions (함수에 의한 정규화를 이용한 local alignment 알고리즘)

  • Lee, Sun-Ho;Park, Kun-Soo
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.5_6
    • /
    • pp.187-194
    • /
    • 2007
  • A local alignment algorithm does comparing two strings and finding a substring pair with size l and similarity s. To find a pair with both sufficient size and high similarity, existing normalization approaches maximize the ratio of the similarity to the size. In this paper, we introduce normalization by functions that maximizes f(s)/g(l), where f and g are non-decreasing functions. These functions, f and g, are determined by experiments comparing DNA sequences. In the experiments, our normalization by functions finds appropriate local alignments. For the previous algorithm, which evaluates the similarity by using the longest common subsequence, we show that the algorithm can also maximize the score normalized by functions, f(s)/g(l) without loss of time.

System Trading using Case-based Reasoning based on Absolute Similarity Threshold and Genetic Algorithm (절대 유사 임계값 기반 사례기반추론과 유전자 알고리즘을 활용한 시스템 트레이딩)

  • Han, Hyun-Woong;Ahn, Hyun-Chul
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.63-90
    • /
    • 2017
  • Purpose This study proposes a novel system trading model using case-based reasoning (CBR) based on absolute similarity threshold. The proposed model is designed to optimize the absolute similarity threshold, feature selection, and instance selection of CBR by using genetic algorithm (GA). With these mechanisms, it enables us to yield higher returns from stock market trading. Design/Methodology/Approach The proposed CBR model uses the absolute similarity threshold varying from 0 to 1, which serves as a criterion for selecting appropriate neighbors in the nearest neighbor (NN) algorithm. Since it determines the nearest neighbors on an absolute basis, it fails to select the appropriate neighbors from time to time. In system trading, it is interpreted as the signal of 'hold'. That is, the system trading model proposed in this study makes trading decisions such as 'buy' or 'sell' only if the model produces a clear signal for stock market prediction. Also, in order to improve the prediction accuracy and the rate of return, the proposed model adopts optimal feature selection and instance selection, which are known to be very effective in enhancing the performance of CBR. To validate the usefulness of the proposed model, we applied it to the index trading of KOSPI200 from 2009 to 2016. Findings Experimental results showed that the proposed model with optimal feature or instance selection could yield higher returns compared to the benchmark as well as the various comparison models (including logistic regression, multiple discriminant analysis, artificial neural network, support vector machine, and traditional CBR). In particular, the proposed model with optimal instance selection showed the best rate of return among all the models. This implies that the application of CBR with the absolute similarity threshold as well as the optimal instance selection may be effective in system trading from the perspective of returns.

Transactions Clustering based on Item Similarity (항목 유사도를 고려한 트랜잭션 클러스터링)

  • 이상욱;김재련
    • Journal of Intelligence and Information Systems
    • /
    • v.9 no.1
    • /
    • pp.179-193
    • /
    • 2003
  • Clustering is a data mining method which help discovering interesting data groups in large databases. In traditional data clustering, similarity between objects in the cluster is measured by pairwise similarity of objects. But we devise an advanced measurement called item similarity in this paper, in terms of nature of clustering transaction data and use this measurement to perform clustering. This new algorithm show the similarity by accepting the concept of relationship between different attributes. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.

  • PDF

Globally Optimal Recommender Group Formation and Maintenance Algorithm using the Fitness Function (적합도 함수를 이용한 최적의 추천자 그룹 생성 및 유지 알고리즘)

  • Kim, Yong-Ku;Lee, Min-Ho;Park, Soo-Hong;Hwang, Cheol-Ju
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.1
    • /
    • pp.50-56
    • /
    • 2009
  • This paper proposes a new algorithm of clustering similar nodes defined as nodes having similar characteristic values in pure P2P environment. To compare similarity between nodes, we introduce a fitness function whose return value depends only on the two nodes' characteristic values. The higher the return value is, the more similar the two nodes are. We propose a GORGFM algorithm newly in conjunction with the fitness function to recommend and exchange nodes' characteristic values for an interest group formation and maintenance. With the GORGFM algorithm, the interest groups are formed dynamically based on the similarity of users, and all nodes will highly satisfy with the information recommended and received from nodes of the interest group. To evaluate of performance of the GORGFM algorithm, we simulated a matching rate by the total number of nodes of network and the number of iterations of the algorithm to find similar nodes accurately. The result shows that the matching rate is highly accurate. The GORGFM algorithm proposed in this paper is highly flexible to be applied for any searching system on the web.

Searching Similar Example-Sentences Using the Needleman-Wunsch Algorithm (Needleman-Wunsch 알고리즘을 이용한 유사예문 검색)

  • Kim Dong-Joo;Kim Han-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.4 s.42
    • /
    • pp.181-188
    • /
    • 2006
  • In this paper, we propose a search algorithm for similar example-sentences in the computer-aided translation. The search for similar examples, which is a main part in the computer-aided translation, is to retrieve the most similar examples in the aspect of structural and semantical analogy for a given query from examples. The proposed algorithm is based on the Needleman-Wunsch algorithm, which is used to measure similarity between protein or nucleotide sequences in bioinformatics. If the original Needleman-Wunsch algorithm is applied to the search for similar sentences, it is likely to fail to find them since similarity is sensitive to word's inflectional components. Therefore, we use the lemma in addition to (typographical) surface information. In addition, we use the part-of-speech to capture the structural analogy. In other word, this paper proposes the similarity metric combining the surface, lemma, and part-of-speech information of a word. Finally, we present a search algorithm with the proposed metric and present pairs contributed to similarity between a query and a found example. Our algorithm shows good performance in the area of electricity and communication.

  • PDF

An Efficient Pixel Value Prediction Algorithm using the Similarity and Edge Characteristics Existing in Neighboring Pixels Scanned in Inverse s-order (역 s-순으로 스캔된 주변 픽셀들에 존재하는 유사성과 에지 특성을 이용한 효율적인 픽셀 값 예측 기법)

  • Jung, Soo-Mok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.1
    • /
    • pp.95-99
    • /
    • 2018
  • In this paper, we propose an efficient pixel value prediction algorithm that can accurately predict pixel value using neighboring pixel values scanned in reverse s-order in the image. Generally, image has similarity with similar values between adjacent pixel values, and may have directional edge characteristics. In this paper, we proposed a method to improve pixel value prediction accuracy by improving GAP(Gradient Adjacent Pixel) algorithm for predicting pixel value by using similarity between adjacent pixels and edge characteristics. The proposed method increases the accuracy of the predicted pixel value by precisely predicting the pixel value using the positional weights of the neighboring pixels. Experiments on real images confirmed the superiority of the proposed algorithm. The proposed algorithm is useful for applications such as reversible data hiding, reversible watermarking, and data compression applications.