• Title/Summary/Keyword: Similarity Algorithm

Search Result 1,152, Processing Time 0.692 seconds

Multi-Level Fusion Processing Algorithm for Complex Radar Signals Based on Evidence Theory

  • Tian, Runlan;Zhao, Rupeng;Wang, Xiaofeng
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1243-1257
    • /
    • 2019
  • As current algorithms unable to perform effective fusion processing of unknown complex radar signals lacking database, and the result is unstable, this paper presents a multi-level fusion processing algorithm for complex radar signals based on evidence theory as a solution to this problem. Specifically, the real-time database is initially established, accompanied by similarity model based on parameter type, and then similarity matrix is calculated. D-S evidence theory is subsequently applied to exercise fusion processing on the similarity of parameters concerning each signal and the trust value concerning target framework of each signal in order. The signals are ultimately combined and perfected. The results of simulation experiment reveal that the proposed algorithm can exert favorable effect on the fusion of unknown complex radar signals, with higher efficiency and less time, maintaining stable processing even of considerable samples.

장면의 유사도 패턴 비교를 이용한 내용기반 동영상 분할 알고리즘 (Content based Video Segmentation Algorithm using Comparison of Pattern Similarity)

  • 원인수;조주희;나상일;진주경;정재협;정동석
    • 한국멀티미디어학회논문지
    • /
    • 제14권10호
    • /
    • pp.1252-1261
    • /
    • 2011
  • 본 논문은 내용기반 동영상 분할을 위한 장면의 유사도 패턴 비교 방법을 제안한다. 동영상 장면 전환의 종류는 크게 급진적 전환과 디졸브(dissolve), 페이드인(fade-in), 페이드아웃(fade-out), 와이프 전환(wipe transition)을 포함하는 점진적 전환 형태로 나눌 수 있다. 제안하는 방법은 모든 종류의 장면 전환 검출 문제를 단지 발생 유무의 문제로 간단 정의하고, 장면 전환 종류는 별도로 구분하지 않는다. 장면 전환을 검출하기 위해서는 프레임간의 유사도를 정의해야 한다. 본 논문에서는 장면 내 유사도(within similarity)와 장면 간 유사도(between similarity)를 정의하며 두 유사도의 통계적 패턴 비교를 통하여 최종적으로 장면 전환을 검출하게 된다. 장면 내 유사도와 장면 간 유사도의 비율을 구하는 방법을 통해 플래시라이트나영상 내 물체 움직임에 대한 거짓 양성 검출을 별도의 후처리 과정 없이도 방지할 수 있음을 확인하였다. 프레임의 특징 값으로는 컬러 히스토그램과 프레임 내 평균 화소값을 이용하였다. TREC-2001, TREC-2002 동영상 셋을 포함한 실험 셋에서 성능을 평가한 결과 제안하는 알고리즘의 경우 총 91.84%의 재현율(recall)과 86.43%의 정확도(precision)의 성능을 보임을 확인할 수 있었다.

스케일-스페이스 필터링을 통한 특징점 추출 및 질감도 비교를 적용한 추적 알고리즘 (Feature point extraction using scale-space filtering and Tracking algorithm based on comparing texturedness similarity)

  • 박용희;권오석
    • 인터넷정보학회논문지
    • /
    • 제6권5호
    • /
    • pp.85-95
    • /
    • 2005
  • 본 논문에서는 시퀀스 이미지에서 스케일-스페이스 필터링을 통한 특징점 추출과 질감도(texturedness) 비교를 적용한 특징점 추적 알고리즘을 제안한다. 특징점을 추출하기 위해서 정의된 오퍼레이터를 이용하는데, 이때 설정되는 스케일 파라미터는 특징점 선정 및 위치 설정에 영향을 주게 되며, 특징점 추적 알고리즘의 성능과도 관계가 있다. 본 논문에서는 스케일-스페이스 필터링을 통한 특징점 선정 및 위치 설정 방안을 제시한다. 영상 시퀀스에서, 카메라 시점 변화 또는 물체의 움직임은 특징점 추적 윈도우내에 아핀 변환을 가지게 하는데, 대응점 추적을 위한 유사도 측정에 어려움을 준다. 본 논문에서는 Shi-Tomasi-Kanade 추적 알고리즘에 기반하여, 아핀 변환에 비교적 견실한 특징점의 질감도 비교를 수행하는 최적 대응점 탐색 방법을 제안한다.

  • PDF

도로 네트워크에서 이동 객체를 위한 시공간 유사 궤적 검색 알고리즘 (Trajectory Search Algorithm for Spatio-temporal Similarity of Moving Objects on Road Network)

  • 김영창;라빈드라 비스타;장재우
    • 한국공간정보시스템학회 논문지
    • /
    • 제9권1호
    • /
    • pp.59-77
    • /
    • 2007
  • 모바일 환경의 대중화와 이를 위한 기반 기술의 발전으로 인하여 이동 객체들을 효과적으로 표현하고 분석하는 것이 중요한 문제로 대두되고 있다. 이러한 환경에서 이동 객체 궤적의 유사성 검색은 궤적에 대한 데이터 마이닝의 일부분으로 중요한 연구 분야중의 하나이다. 본 논문에서는 도로 네트워크상의 이동 객체 궤적을 위한 시공간 유사 궤적 검색 알고리즘을 제안한다. 이를 위하여 도로 네트워크상에서 두 이동 객체 궤적 사이의 시공간 거리를 정의하고, 이를 기반으로 궤적 사이의 시공간 유사도 측정 방법을 제안한다. 유사 궤적 알고리즘은 효율적인 검색을 위하여 시그니쳐 파일 기법을 이용하여 궤적을 검색한다. 마지막으로, 본 논문에서 제안하는 시공간 유사 궤적 검색 알고리즘을 구현하고, 성능 분석을 통해 제안하는 알고리즘의 효율성을 입증한다.

  • PDF

분산 컴퓨팅 환경에서 효율적인 유사 조인 질의 처리를 위한 행렬 기반 필터링 및 부하 분산 알고리즘 (Matrix-based Filtering and Load-balancing Algorithm for Efficient Similarity Join Query Processing in Distributed Computing Environment)

  • 양현식;장미영;장재우
    • 한국콘텐츠학회논문지
    • /
    • 제16권7호
    • /
    • pp.667-680
    • /
    • 2016
  • 하둡 맵리듀스와 같은 분산 컴퓨팅 플랫폼이 개발됨에 따라, 기존 단일 컴퓨터 상에서 수행되는 질의 처리 기법을 분산 컴퓨팅 환경에서 효율적으로 수행하는 것이 필요하다. 특히, 주어진 두 데이터 집합에서 유사도가 높은 모든 데이터 쌍을 탐색하는 유사 조인 질의를 분산 컴퓨팅 환경에서 수행하려는 연구가 있어 왔다. 그러나 분산 병렬 환경에서의 기존 유사 조인 질의처리 기법은 데이터 전송 비용만을 고려하기 때문에 클러스터 간에 비균등 연산 부하 분산의 문제점이 존재한다. 본 논문에서는 분산 컴퓨팅 환경에서 효율적인 유사 조인 처리를 위한 행렬 기반 부하 분산 알고리즘을 제안한다. 제안하는 알고리즘은 클러스터의 균등 부하 분산을 위해 행렬을 이용하여 예상되는 연산 부하를 측정하고 이에 따라 파티션을 생성한다. 아울러, 클러스터에서 질의 처리에 사용되지 않는 데이터를 필터링함으로서 연산 부하를 감소시킨다. 마지막으로 성능 평가를 통해 제안하는 알고리즘이 기존 기법에 비해 질의 처리 성능 측면에서 우수함을 보인다.

Similarity Classifier based on Schweizer & Sklars t-norms

  • Luukka, P.;Sampo, J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1053-1056
    • /
    • 2004
  • In this article we have applied Schweizer & Sklars t-norm based similarity measures to classification task. We will compare results to fuzzy similarity measure based classification and show that sometimes better results can be found by using these measures than fuzzy similarity measure. We will also show that classification results are not so sensitive to p values with Schweizer & Sklars measures than when fuzzy similarity is used. This is quite important when one does not have luxury of tuning these kind of parameters but needs good classification results fast.

  • PDF

아이템의 유사도를 고려한 트랜잭션 클러스터링 (Transactions Clustering based on Item Similarity)

  • 이상욱;김재련
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.250-257
    • /
    • 2002
  • Clustering is a data mining method, which consists in discovering interesting data distributions in very large databases. In traditional data clustering, similarity of a cluster of object is measured by pairwise similarity of objects in that paper. In view of the nature of clustering transactions, we devise in this paper a novel measurement called item similarity and utilize this to perform clustering. With this item similarity measurement, we develop an efficient clustering algorithm for target marketing in each group.

  • PDF

Collaborative Filtering Algorithm Based on User-Item Attribute Preference

  • Ji, JiaQi;Chung, Yeongjee
    • Journal of information and communication convergence engineering
    • /
    • 제17권2호
    • /
    • pp.135-141
    • /
    • 2019
  • Collaborative filtering algorithms often encounter data sparsity issues. To overcome this issue, auxiliary information of relevant items is analyzed and an item attribute matrix is derived. In this study, we combine the user-item attribute preference with the traditional similarity calculation method to develop an improved similarity calculation approach and use weights to control the importance of these two elements. A collaborative filtering algorithm based on user-item attribute preference is proposed. The experimental results show that the performance of the recommender system is the most optimal when the weight of traditional similarity is equal to that of user-item attribute preference similarity. Although the rating-matrix is sparse, better recommendation results can be obtained by adding a suitable proportion of user-item attribute preference similarity. Moreover, the mean absolute error of the proposed approach is less than that of two traditional collaborative filtering algorithms.

Development of a Personalized Similarity Measure using Genetic Algorithms for Collaborative Filtering

  • Lee, Soojung
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권12호
    • /
    • pp.219-226
    • /
    • 2018
  • Collaborative filtering has been most popular approach to recommend items in online recommender systems. However, collaborative filtering is known to suffer from data sparsity problem. As a simple way to overcome this problem in literature, Jaccard index has been adopted to combine with the existing similarity measures. We analyze performance of such combination in various data environments. We also find optimal weights of factors in the combination using a genetic algorithm to formulate a similarity measure. Furthermore, optimal weights are searched for each user independently, in order to reflect each user's different rating behavior. Performance of the resulting personalized similarity measure is examined using two datasets with different data characteristics. It presents overall superiority to previous measures in terms of recommendation and prediction qualities regardless of the characteristics of the data environment.

Spectral clustering based on the local similarity measure of shared neighbors

  • Cao, Zongqi;Chen, Hongjia;Wang, Xiang
    • ETRI Journal
    • /
    • 제44권5호
    • /
    • pp.769-779
    • /
    • 2022
  • Spectral clustering has become a typical and efficient clustering method used in a variety of applications. The critical step of spectral clustering is the similarity measurement, which largely determines the performance of the spectral clustering method. In this paper, we propose a novel spectral clustering algorithm based on the local similarity measure of shared neighbors. This similarity measurement exploits the local density information between data points based on the weight of the shared neighbors in a directed k-nearest neighbor graph with only one parameter k, that is, the number of nearest neighbors. Numerical experiments on synthetic and real-world datasets demonstrate that our proposed algorithm outperforms other existing spectral clustering algorithms in terms of the clustering performance measured via the normalized mutual information, clustering accuracy, and F-measure. As an example, the proposed method can provide an improvement of 15.82% in the clustering performance for the Soybean dataset.