• 제목/요약/키워드: Silyl($SiH_3$)

검색결과 15건 처리시간 0.018초

Interaction of Hydrosilanes with the Surface of Rhodium

  • Boo Bong Hyun;Hong Seung Ki;Lee Sun Sook;Kim Hyun Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1103-1107
    • /
    • 1994
  • Interaction of triethylsilane and diphenylsilane ($Ph_2$$SiH_2$, $Ph_2$$SiD_2$) with the surfaces of rhodium has been examined by trapping the reaction intermediates with 2,3-dimethyl-l,3-butadiene. 1,4-Hydrosilylation of the diene is predominantly observed to occur under mild condition over the rhodium catalyst. It is inferred from the product analyses that silylene and silyl radicals bonded to rhodium surfaces are the intermediates for addition of silylene to the diene, and for 1,4-hydrosilylation, respectively.

Dehydrocoupling of Bis(silyl)alkylbenzenes to Network Polysilanes, Catalyzed by Group 4 Metallocene Combination

  • 김명희;이준;무수용;김종현;고영춘;우희권
    • 통합자연과학논문집
    • /
    • 제3권1호
    • /
    • pp.1-6
    • /
    • 2010
  • Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were synthesized in high yields by the reduction of the corresponding chlorosilanes with $LiAlH_4$ in diethyl ether. The dehydrocoupling of 1 and 2 was performed using group IV metallocene complexes generated in situ from $Cp_2MCl_2$/Red-Al and $Cp_2MCl_2$/n-BuLi (M = Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 ($M_w$ vs polystyrene using GPC) and from 500 to 900 ($M_w$ vs polystyrene using GPC). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble network polymer.

Photopolymerization of Methyl Methacrylate with Primarty Aryl- and Alkylsilanes

  • 우희권;홍란영;양수연;박선희;송선정;함희석
    • Bulletin of the Korean Chemical Society
    • /
    • 제16권11호
    • /
    • pp.1056-1059
    • /
    • 1995
  • The bulk photopolymerization of methyl methacrylate (MMA) with primary arylsilane (e.g., phenylsilane) and various primary alkylsilanes (e.g., benzylsilane, 3-phenoxyphenyl-1-silabutane, 3-naphthyl-1-silabutane, and 3-chlorophenyl-1-silabutane) was performed to produce poly(MMA)s containing the corresponding silyl moiety as an end group. It was found for the phenylsilane that while the polymerization yields increased and then decreased with a turning point at the molar ratio of MMA:silane=10:1 as the relative silane concentration increases, the polymer molecular weights decreased, and the TGA residue yields and the relative intensities of SiH IR stretching bands increased with increment of molar ratio of silane over MMA. The photopolymerization yield of MMA with the arylsilane was found to be higher than those with the alkylsilanes and without the silanes. Thus, the silanes seemed to significantly influence on the photopolymerization as both chain initiation and chain transfer agents.

이소니트릴의 자유라디칼반응 (Homolytic Reactions of Isonitriles)

  • 김성수
    • 대한화학회지
    • /
    • 제24권3호
    • /
    • pp.250-258
    • /
    • 1980
  • 여러종류의 자유라디칼들이 이소니트릴에 첨가되어 중간체인 imidoyl 자유라디칼 RN=CR'을 형성한다. 이것은 또한 imine으로부터 imidoyl hydrogen 을 떼어 내는 다음과 같은 반응에 의해서도 생성될 수 있다. RN=C(H)R' + R"${\cdot}{\rightarrow}$ RN=CR' + R"-H 중간체인 imidoyl 자유라디칼은 ${\beta}$-cleavage 및 aton transfer 반응을 통해서 안정된 분자를 형성한다. ${\beta}$-cleavage는 imidoyl 자유라디칼의 구조에 따라서 두개의 다른 방향으로의 반응이 가능하다. Cyanide transfer와 소위 말하는 정상적인 ${\beta}$-cleavage가 그러한 반응들이다. t-Butoxy 자유라디칼이 t-butylisonitrile 7에 첨가되면 중간체인 t-Bu-N=C-O-Bu-t가 생성되는데, 이것은 ${\beta}$-cleavage반응을 통해서 t-butylisocyanate와 t-butyl 자유라디칼을 형성한다. Phenyl 자유라디칼은 7에 첨가되어 중간체인 t-Bu-N=$C-C_6H_5$를 형성하는데 이것은 cyanide transfer 반응을 통해서 benzonitrile과 t-butyl 자유라디칼로 분해된다. 여기서 생성되는 t-butyl 자유라디칼은 다시 7에 첨가하여 intermediate인 자유라디칼 t-Bu-N=C-Bu-t을 형성하고, 이것은 다시 pivalonlonitrile과 t-butyl 자유라디칼로 분해되는데 이러한 반응이 반복되므로 radical chain isomerization을 일으킨다. Silyl 자유라디칼은 7에 첨가되어 t-Bu-N=$C-Si(CH_3)_3$를 형성하고, 이것은 cyanide transfer 반응을 거쳐서 다시 $(CH_3)_3$SiCN과 t-butyl 자유라디칼로 분해된다.

  • PDF