• Title/Summary/Keyword: Silyl($SiH_3$)

Search Result 15, Processing Time 0.029 seconds

Preparation and Stability of Silyl Adlayers on 2×1-Reconstructed and Modified Si(100) Surfaces (Si(100)-2×1 표면과 개질된 Si(100) 표면 상에서 실릴 (Silyl) 흡착충의 형성과 안정성)

  • Jo, Sam-K.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.1
    • /
    • pp.15-23
    • /
    • 2009
  • Saturation-coverage silyl, $-SiH_3(a)$, overlayers were prepared from $Si_2H_6$ adsorption on three comparative surfaces: clean unmodified; D-precovered; and atomically roughened Si(100). Together with its precursor-mediated adsorption behavior, the surface reactivity of $Si_2H_6$ was found to be the highest on the unmodified Si(100)-$2{\times}1$ surface. This was correlated with its dissociative adsorption mechanism, in which both the $H_3Si-SiH_3$ bond scission and the dual surface $Si-SiH_3(a)$ bond formation require a surface dangling bond 'pair'. The unusually high thermal stability of $-SiH_3(a)$ on the unmodified surface was ascribed to a nearly close-packed $-SiH_3(a)$ coverage of ${\sim}0.9$ monolayer and the consequent lack of dangling bonds on the silyl-packed surface.

Photoaddition Reactions of N-Methylthiophthalimide with $\alpha$-Silyl-n-electron Donors via Single Electron Transfer-Desilylation and Hydrogen Atom Abstraction Pathways

  • Yoon, Ung-Chan;Oh, Sun-Wha;Moon, Seong-Chul;Hyung, Tae-Gyung
    • Journal of Photoscience
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2002
  • Studies have been conducted to explore photoaddition reactions of N-methylthiophthalimide with $\alpha$-silyl-n-electron donors Et$_2$NCH$_2$SiMe$_3$, n-PrSCH$_2$SiMe$_3$ and EtOCH$_2$SiMe$_3$. Photoaddition of $\alpha$-silyl amine Et$_2$NCH$_2$SiMe$_3$ to N-methylthiophthalimide occurs in $CH_3$CN and benzene to produce non-silicon containing adduct in which thiophthalimide thione carbon is bonded to $\alpha$-carbon of $\alpha$-silyl amine in place of the trimethylsilyl group. In contrast, photoaddition of EtOCH$_2$SiMe$_3$ to N-methylthiophthalimide generates two diastereomeric adducts in which thiophthalimide thione carbon is connected to $\alpha$-carbon of $\alpha$-silyl ether in place of u-hydrogen. Based on a consideration of the oxidation potentials of u-silyl-n-electron donors and the nature of photoadducts, mechanism for these photoadditions involving single electron transfer(SET) -desilylation and H atom abstraction pathways are proposed.

  • PDF

Synthesis of Tris(silyl)methanes by Modified Direct Process

  • Lee, Chang Yeop;Han, Jun Su;Yu, Bok Ryeol;Jeong, Il Nam
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.10
    • /
    • pp.959-968
    • /
    • 2000
  • Direct reaction of elemental silicon with a mixture of (dichloromethyl)silanes 1 $[Cl_3-nMenSiCHCl_2:$ n = 0 (a), n = 1(b), n = 2(c), n = 3(d)] and hydrogen chloride has been studied in the presence of copper catalyst using a stirred bed reactor equ ipped with a spiral band agitator at various temperatures from $240^{\circ}C$ to $340^{\circ}C.$ Tris(si-lyl) methanes with Si-H bonds, 3a-d $[Cl_3-nMenSiCH(SiHCl_2)_2]$, and 4a-d $[Cl_3-nMenSiCH(SiHCl_2)(SiCl_3)]$, were obtained as the major products and tris(silyl)methanes having no Si-H bond, 5a-d $[Cl_3-nMenSiCH(SiCl_3)_2]$, as the minor product along with byproducts of bis(chlorosilyl)methanes, derived from the reaction of silicon with chloromethylsilane formed by the decomposition of 1. In addition to those products, trichlorosilane and tetra-chlorosilane were produced by the reaction of elemental silicon with hydrogen chloride. The decomposition of 1 was suppressed and the production of polymeric carbosilanes reduced by adding hydrogen chloride to 1. Cad-mium was a good promoter for and the optimum temperature for this direct synthesis was $280^{\circ}C$.

Synthesis and Reactivity of the Pentacoordinate Organosilicon and -germanium Compounds Containing the C,P-Chelating ο-Carboranylphosphino Ligand [ο-C2B10H10PPh2-C,P](CabC,P

  • Lee, Tae-Gweon;Kim, Sang-Hoon;Kong, Myong-Seon;Kang, Sang-Ook;Ko, Jae-Jung
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.6
    • /
    • pp.845-851
    • /
    • 2002
  • The synthesis of the intramolecular donor - stabilized silyl and germyl complexes of the type ($Cab^c.p) MMe_2X$ (2a:M=Si, X=Cl;2b;M= Ge, X=Cl;2e;M=Si,X=H) was achieved by the reaction of $LiCab^c,p$ (1) with $Me_2SiClX$ and $Me_2GeCl_2$ respectively. The intramolecular M←P interacion in 2a-2c is provided by $^1H$, $13^C.$, $31^P$ and $29^Si$ NMR spectroscopy. The salt elimination reactions of dichlorotetramethyldisilane and -digermane with 1 afforded the $bis(\sigma-carboranylphosphino)disilane$ and disgermane [$(Cab^C.P)MMe_2]_2(4a;M$ = Si;4b: M=Ge). The oxidative addition reaction of 4a-4b with $pd_2(dba)_3CHCl_3afforded$ the bis(silyl)-and bis(germyl)-palladium complexes. The chloro-bridged dipalladium complexes were obtained by the reaction of 2a-2b with $pd_2(dba)_3CHCl_3$ The crystal structures of 5a and 7b were determined by X-ray structural studies.

Si(100) ETCHING BY THERMAL-ENERGY HYDROGEN ATOMS

  • Kang, Joo-Hyun;Jo, Sam-Keun;John G. Ekerdt
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.59-65
    • /
    • 1997
  • Efficient Si(100) etching by thermal H atoms at low substrate temperatures has been achieved. Gas-phase etching product $SiH_4$(g) upon H atom bombardment resulting from direct abstraction of $SiH_3$(a) by impinging H atoms was detected with a quadrupole mass spectrometer over the substrate temperature range of 105-408 K Facile depletion of all surface silyl ($SiH_3$) groups the dissociative adsorption product of disilane ($Si_2H_6$) at 105K from Si(100)2$\times$1 by D atoms and continuous regeneration and removal of $SiD_3$(a) were all consumed. These results provide direct evidence for efficient silicon surface etching by thermal hydrogen bombardment at cryogenic temperatures as low as 105K We attribute the high etching efficiency to the formation and stability of $SiH_3$(a) on Si(100) at lowered surface temperatures allowing the $SiH_3$(a) abstraction reaction by additional H atom to produce $SiH_4$((g).

  • PDF

Photopolymerization of Methyl Methacrylate with p-X-$C_{6}H_{4}SiH_{3}$ (X = F, $CH_3$, $OCH_3$)

  • U, Hui Gwon;Kim, Bo Hye;Jo, Myeong Sik;Kim, Dae Yeong;Choe, Yeong Seop;Gwak, Yeong Chae;Ham, Hui Seok;Kim, Dong Pyo;Hwang, Taek Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1337-1340
    • /
    • 2001
  • The bulk photopolymerization of methyl methacrylate (MMA) with para-substituted phenylsilanes such as F-C6H4SiH3 (1), H3C-C6H4SiH3 (2), and H3CO-C6H4SiH3 (3) was performed to produce poly(MMA)s containing the respective silyl moiety as an end group. For all the hydrosilanes, the polymerization yields and the polymer molecular weights decreased, whereas the TGA residue yields and the relative intensities of Si-H IR stretching bands increased as the relative silane concentration over MMA increased. The polymerization yields and polymer molecular weights of MMA with 1-3 increased in the order of 3 < 1 < 2. These hydrosilanes influence significantly upon the photopolymerization of MMA as both chain-initiation and chain-transfer agents.

Effects of the Variation of Silyl Hydride-to-Vinyl Ratios in Dental Polyvinylsiloxane Impression Materials (실리콘 폴리머의 비닐그룹에 대한 가교제의 Si-H 비율이 폴리비닐실록산 치과용 인상재의 물성에 미치는 영향)

  • Ju, Dong-Hyun;Jeong, Young-Hwa;Song, Ho-Jun;Choi, Chang-Nam;Park, Yeong-Joon
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.150-155
    • /
    • 2009
  • This study examined the effects of the concentration variation of the silyl hydride (Si-H) functional group in polymethylhydrogen siloxane cross-linker and the vinyl-functional group in silicone prepolymer on the physical properties of the dental polyvinylsiloxane impression materials (PVS). When the SiH/Vinyl ratio was 1.6 (Group $\underline{C6}$ containing ${\underline{C}}ross$-linker $\underline{6}$ parts), the setting rate was too slow even though their tensile strength was the highest within the tested groups. When the SiH/Vinyl ratio was 3.2 (Group C12), the setting rate was too fast to allow appropriate working time even though their mechanical properties were good. The C14 group showed rather lower tensile strength compared to the groups having lower cross-linker contents. Notably, too much incorporation of cross-linker, like C16 group, induced delay of the setting, by which the mechanical and manipulation properties were detrimentally affected.

Photopolymerization of Methyl Methacrylate with 1,4-$C_6H_4(SiH_{3-x}Me_x)_2$

  • U, Hui Gwon;O, Eun Mi;Park, Jong Hak;Kim, Bo Hye;Kim, Yong Nam;Yun, Chan Ho;Ham, Hui Suk
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.3
    • /
    • pp.291-294
    • /
    • 2000
  • The bulk photopolymerization of methyl methacrylate(MMA) with bis(silane)s such as 1,4-$C_6H_4(SiH_3)_2$ (1) and 1,4-$C_6H_4(SiH_2Me)_2$ (2) was performed to produce poly(MMA)s possessing the corresponding bis(silyl) moiety as an end group. For the bis(silane)s, while the polymerizaiton yields and the polymer molecular weights decreased, the TGA residue yields and the relative intensities of Si-H IR stretching bands increased as the relative bis(silane) concentration over MMA increased. The polymerizaion yield, polymer molecular weight, and TGA residue yield of MMA with 1 were found to be higher than those with 2. The bis(silane)s appears to influence significantly upon the photopolymerization of MMA as both chain initiation and chain transfer agents.

Dehydropolymerization of Bis(silyl)alkylbenzenes to Highly Cross-Linked Polysilanes, Catalyzed by Group 4 Metallocene Complex

  • 우희권;김숙연;김환기;연승호;조은정;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1109-1112
    • /
    • 1995
  • Bis(silyl)alkylbenzenes such as bis(1-sila-sec-butyl)benzene (1) and 2-phenyl-1,3-disilapropane (2) were prepared in high yields by reduction of the corresponding chlorosilanes with LiAlH4. The dehydropolymerization of 1 and 2 was carried out with group 4 metallocene complexes generated in situ from Cp2MCl2/Red-Al and Cp2MCl2/n-BuLi (M=Ti, Hf), producing two phases of polymers. The TGA residue yields of the insoluble polymers were in the range of 64-74%. The molecular weights of the soluble polymers produced ranged from 700 to 5000 (Mw vs polystyrene) and from 500 to 900 (Mn vs polystyrene). The dehydropolymerization of 1 and 2 seemed to initially produce a low-molecular-weight polymer, which then underwent an extensive cross-linking reaction of backbone Si-H bonds, leading to an insoluble polymer.