• Title/Summary/Keyword: Silver transport

Search Result 75, Processing Time 0.026 seconds

FT-Raman Studies on Ionic Interactions in ${\pi}$-Complexes of Poly(hexamethylenevinylene) with Silver Salts

  • Kim Jong-Hak;Min Byoung-Ryul;Won Jong-Ok;Kang Yong-Soo
    • Macromolecular Research
    • /
    • v.14 no.2
    • /
    • pp.199-204
    • /
    • 2006
  • Remarkably high and stable separation performance for olefin/paraffin mixtures was previously reported by facilitated olefin transport through ${\pi}$-complex membranes consisting of silver ions dissolved in poly(hexamethylenevinylene) (PHMV). In this study, the ${\pi}$-complex formation of $AgBF_4,\;AgClO_4\;and\;AgCF_{3}SO_3$ with PHMV and their ionic interactions were investigated. FT-Raman spectroscopy showed that the C=C stretching bands of PHMV shifted to a lower frequency upon incorporation of silver salt, but the degree of peak shift depended on the counter-anions of salt due to different complexation strengths. The symmetric stretching modes of anions indicated the presence of only free ions up to [C=C]:[Ag]=1:1, demonstrating the unusually high solubility of silver salt in PHMV. Above the solubility limit, the ion pairs and higher-order ionic aggregates started to form. The coordination number of silver ion for C=C of PHMV was in the order $AgBF_4$ > $AgClO_4$ > $AgCF_{3}SO_3$, but became similar at [C=C]:[Ag]=1:1. The different coordination number was interpreted in terms of the different transient crosslinks of silver cations in the complex, which may be related to both the interaction strength of the polymer/silver ion and the bulkiness of the counteranion.

Effect of Brij98 on Durability of Silver Polymer Electrolyte Membranes for Facilitated Olefin Transport (올레핀 촉진수송용 고분자 전해질막의 내구성에 대한 Brij98의 효과)

  • Kang, Yong-Soo;Kim, Jong-Hak;Park, Bye-Hun;Won, Jong-Ok
    • Membrane Journal
    • /
    • v.16 no.4
    • /
    • pp.294-302
    • /
    • 2006
  • Silver polymer electrolytes are very promising membrane materials for the separation of olefin/paraffn mixtures. Olefin molecules are known to be transported through reversible complex formation with silver ions entrapped iii polymer matrix. However, they have poor long-term stability, which is very important fur the industrial application; the selectivity through the membrane decreases gradually with time mostly due to the reduction of silver ions ($Ag^+$) into silver nanoparticles ($Ag^0$). In this study, the stability of silver polymer electrolyte was investigated for poly(vinyl pyrrolidone) (PVP) and $AgBF_4$ system containing a surfactant, i.e. $C_{18}H_{35}(OCH_2CH_2)_{20}OH$ (Brij98) as a stabilizer. The reduction behavior of silver ions to silver nanoparticles in PVP was also investigated by atomic force microscopy (AFM) and UV-visible spectroscopy. It was found that the growth of silver nanoparticles was slower and selectivity of polymer electrolyte for propylene in propylene/propane was maintained longer time when Brij98 was added as a stabilizer.

Ionic Liquid as a Solvent and the Long-Term Separation Performance in a Polymer/Silver Salt Complex Membrane

  • Kang, Sang-Wook;Char, Kook-Heon;Kim, Jong-Hak;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.167-172
    • /
    • 2007
  • The reduction behavior of silver ions to silver nanoparticles is an important topic in polymer/silver salt complex membranes to facilitate olefin transport, as this has a significant effect on the long-term performance stability of the membrane. In this study, the effects ofthe solvent type on the formation of silver nanoparticles, as well as the long-term membrane performance of a solid polymer/silver salt complex membrane were investigated. These effects were assessed for solid complexes of poly(N-vinyl pyrrolidone) $(PVP)/AgBF_4$, using either an ionic liquid (IL), acetonitrile (ACN) or water as the solvent for the membrane preparation. The membrane performance test showed that long-term stability was strongly dependent on the solvent type, which increased in the following order: IL > ACN >> water. The formation of silver nanoparticles was more favorable with the solvent type in the reverse order, as supported by UV-visible spectroscopy. The poor stability of the $(PVP)/AgBF_4$ membrane when water was used as the solvent might have been due to the small amount of water present in the silver-polymer complex membranes actively participating in the reduction reaction of the silver ions into silver nanoparticles. Conversely, the higher stability of the $(PVP)/AgBF_4$, membrane when an IL was used as the solvent was attributable to the cooperative coordination of silver ions with the IL, as well as with the polymer matrix, as confirmed by FTIR spectroscopy.

Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires (은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석)

  • Ha, Jeonghong;Kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

Preparation of PEBAX-5513/Ag Nanoparticles/7,7,8,8-tetracyanoquinodimethane Composites for Olefin Separation and Analysis of Anions (올레핀 분리용 PEBAX-5513/Ag Nanoparticles/7,7,8,8-tetracyanoquinodimethane 복합체 제조 및 음이온 효과 분석)

  • Kim, Soyoung;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.246-251
    • /
    • 2019
  • Facilitated transport membranes using silver nanoparticles as carriers for olefin/paraffin separation have been interested. $AgBF_4$ has been used as a precursor of silver nanoparticles in previous studies. However, relatively expensive $AgBF_4$ is not suitable for commercialization, and thus, PEBAX-5513/AgNPs (precursor: $AgClO_4$)/7,7,8,8-tetracyanoquinodimethane (TCNQ) composite membranes were prepared using silver nanopaticles with relatively inexpensive $AgClO_4$ precursors. Composite membranes of various compositions were prepared for PEBAX-5513/AgNPs/TCNQ composites, but no separation performance was observed. As a result of FT-IR analysis, it was confirmed that silver nanoparticles were formed in the PEBAX-5513 polymer and the surface of Ag nanoparticles was polarized by TCNQ, but the formed silver nanoparticles were not stabilized. From these results, it was concluded that the anion of the precursor plays an important role in the olefin/paraffin separation.

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts (AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막)

  • Kim, Sang Jin;Jung, Jung Pyu;Park, Cheol Hun;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.25 no.6
    • /
    • pp.496-502
    • /
    • 2015
  • Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

Analysis of Facilitated Olefin Transport Through Polymer Electrolyte Membranes Containing Silver Salts (은염을 포함하는 고분자 전해질 막을 통한 올레핀 촉진수송의 해석)

  • Yong Soo Kang;Dongkyun Ko;Jong Hak Kim;Sung Taik Chung
    • Membrane Journal
    • /
    • v.13 no.4
    • /
    • pp.239-245
    • /
    • 2003
  • The origin of large difference of selectivity of $C_3H_6$ over $C_3H_8$ between pure gas and mixed gas through silver polymer electrolyte membranes is investigated. Firstly, the effect of feed condition on the permeance of mixture gas ($C_3H_6/C_3H^8$) and the separation performance is examined. Upon decrease of the $C_3\;H_6$ concentration, the $C_3H_6$ permeance decreased whereas the permeance of $C_3H_8$ increased, resulting in the decrease of the selectivity of $C_3H_6/C_3H_8/.$ This result is ascribed to the $C_3H_6$-induced plasticization of membranes. Experimental results were validated by means of mathematical modeling, where pressure independent permeabilities were used.