• Title/Summary/Keyword: Silver powder size

Search Result 42, Processing Time 0.031 seconds

Preparation of Silver-doped Hydroxyapatite Using Sol-gel Method (졸-겔법을 이용한 은 담지 하이드록시아파타이트의 제조)

  • Mun Byung-Bae;Kim Ho-Kun
    • Journal of Powder Materials
    • /
    • v.12 no.6 s.53
    • /
    • pp.428-432
    • /
    • 2005
  • In the present study, silver-doped antibacterial hydroxyapatites were successfully prepared by the sol-gel method. For the starting solution, the molar ratio of $Ca(NO_3)_2{\cdot}4H_2O, P(OC_2H_5)_3,\;C_2H_5OH,\;and\;H_O$ was set to 0.075:0.045:20:0.135; $AgNO_3$ was added to a ratio of Ag to total cation concentration of $0.5-12 mol\%$. The prepared sol was dried at $100^{\circ}C$ for 48h and heat-treated at $1000^{\circ}C$ for 2h to obtain particles in the 200-500nm size range. The product from the synthesis of silver-doped hydroxyapatite was investigated through X-ray diffraction experiments and scanning electron microscopy. The product showed high antibacterial properties, with a disinfection ratio of Staphylococcus aureus (ATCC 6538) and Escherichia coli (ATCC 25922) over $99.9^{\circ}C$ as calculated from an antimicrobial effects evaluation by the shake flask method.

Effect of Nano-Sized Silver Powders in CNT Paste on Field Emission Characteristics of Carbon Nanotube Cathode (탄소나노튜브 캐소드의 전계방출 특성에 미치는 CNT 페이스트용 나노입자 은분말의 영향)

  • An, Young-Je;Lee, Ji-Eon;Shin, Heon-Cheol;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2008
  • Carbon nanotube (CNT) cathodes were fabricated using nano-sized silver (Ag) powders as a bonding material between the CNTs and cathode electrodes. The effects of the powder size on the sintering behavior, the current density and emission image for CNT cathodes were investigated. As the diameter of the Ag powders decreases to 10 nm, the sintering temperature of the CNT cathode was lowered primarily due to the higher specific surface area of the Ag powders. In this study, it was demonstrated that nano-sized Ag powders can be feasibly used as a bonding material for a screen-printed CNT cathode, yielding a high current density and a uniform emission image.

Thermal Characteristics of Non-Pb Glass Frit and Electrical Characteristics with Ag Powder For High Efficiency Silicon Solar Cells (실리콘 태양전지의 고효율 특성을 위한 Ag 분말 특성 및 Non Pb계 glass frit 열특성)

  • Park, Ki Bum;Lee, Jung Woong;Yang, Seung Jin;Yun, Mi Kyoung;Park, Seong Yong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.101.3-101.3
    • /
    • 2010
  • Glass frit은 실리콘 태양전지의 Ag/Si contact을 위해 필수적이다. 태양전지의 고효율 특성 구현 때문에, Contact resistance(Rc)가 우수한 Pb-frit의 사용이 불가피한 상황이다. 본 연구는 기존의 Pb계를 무연화함과 동시에 동등수준의 효율을 목표로 하였다. Ag 분말 size 및 glass frit의 열적 거동 특성이 SiNx 코팅층 침투와 Ag re-crystallites에 미치는 영향에 대해 평가하였다. 6 inch 다결정 실리콘 웨이퍼를 사용하였으며, softening temperture(Sp)별로 4종의 Bi계 glass frit을 제조 하였고, 분말 size가 다른 3종의 Ag powder를 선정하였다. Glass frit Sp가 $460^{\circ}C$ 이상의 경우에는 효율이 10% 미만이였으나 Sp $460^{\circ}C$ 이하에서는 16% 수준의 효율을 확인할 수 있었다.

  • PDF

Synthesis and luminescence of silver doped zinc sulfide phosphor

  • Jeong, Young-Ho;Khatkar, S.P.;Park, Jin-Won;Hua, Yang;Han, Sang-Do
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1013-1016
    • /
    • 2003
  • A new route for the synthesis of silver doped of zinc sulfide phosphor by combustion method has been investigated. Silver nitrate was decomposed with urea or carbohydrazide to give small size particles in presence of alkali metal halides at low temperature compared to the conventional method. The high temperature inherent to the highly exothermic nature of redox reaction leads to well-crystallized powder in short time. The phosphors thus obtained were further heated at $1050^{\circ}C$ in an inert atmosphere for 3hrs to get better luminescence properties.

  • PDF

Synthesis of Flake Ag Powder by Polyol Process (폴리올법에 의한 편상의 은 분말 합성)

  • Kim Dong-Jin;Liang Huanzhen;Ahn Jong-Gwan;Lee Jae-Ryeong;Chung Hun-Saeng
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.477-485
    • /
    • 2004
  • Monodispersed flaky silver powder was obtained by controlling the ratios of $H_{2}O_{2}/NH_{3}$ and Agin in a mixed solution of ethylene glycol and ammonia with an addition of PVP. The effects of $NH_{3}/Ag,\; H_{2}O_{2}/Ag\;and\;H_{2}PtCl_{6}/Ag$ on its morphology and size were investigated. In $H_{2}O_{2}-NH_{3}-AgNO_{3}\;system,\;NH_{3}/Ag$ molar ratio was found to be an important reaction factor for the nucleation and crystal growth of Ag powder. The synthesis of flaky powder was optimized at over 6 of $NH_{3}/Ag \;and\;5\;of\;H_{2}O_{2}/Ag\;under\;1.0{\times}10^{-3}\;of\;Pt/Ag.\;Moreover,\;as\;the\; NH_{3}/Ag$ molar ratio increased, the size of precipitates was increased regardless of the amount of Pt. In the absence of $H_{2}PtCI$, the morphology and size of reduced Ag powder were found to be irregular in shape $2-4{\mu}m$ in diameter. However, homogenized fine Ag powder was obtained due to heterogeneous nucleation when $H_{2}PtCI$ used as a cat-alyst, and flaky one was synthesized with the addition of Pt over $1.0{\times}10^{-3}$ of Pt/Ag.

Photosensitive Black Matrix Paste for Bus Electrode of PDP

  • Woo, Chang-Min;Kim, Duck-Gon;Kim, Dong-Ju;Song, Gab-Deuk;Kim, Soon-Hak;Cho, Ho-Young;Lee, Yoon-Soo;Park, Lee-Soon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1360-1363
    • /
    • 2007
  • The bus electrode is composed of two layers. One is the black matrix(BM) and silver layer is formed on top of black layer. The BM paste is made by mixing $Co_3O_4$ black powder with photosensitive vehicle and rheological additives. In this work we studied the effect of $Co_3O_4$ black powder and glass frit on the rheological property of photosensitive BM paste. We also examined how the size and content of black powder and glass frit affect the transmittance and reflectance of the BM layer after sintering.

  • PDF

A Study on the Effects of Electroencephalogram of Blocking Electromagnetic Wave Materials by useing the Nano Silver (나노 은을 이용한 전자파 차폐 직물이 뇌파에 미치는 영향)

  • Lee, Su-Jeong;Lee, Tae-Il
    • Fashion & Textile Research Journal
    • /
    • v.6 no.6
    • /
    • pp.810-814
    • /
    • 2004
  • This study is one of the fundamental researches for the development of future smart clothing and textile products using silver(Ag) nano powder. Our study was focused on the blocking or insulating effects of nano-processed textiles from electromagnetic waves. Also, for the surveying of the actual effect to human body, we measure the variation of electroencephalogram which is an indication of human physical symptoms. Among various textiles in this experiment, nano silver processed case has shown the best blocking performance from the electromagnetic waves, which decreases depending on the distance. As a reference model of working environment, we setup the visual stimuli object on the computer that is a source of electromagnetic wave. The power spectrum distribution and the incidence of electroencephalogram was measured. The analysed data has shown that, with nano-processed textiles, ${\beta}$ wave does not appear very often where ${\beta}$ wave appears only to illustrate the stable states of human's body. However, as for the materials without nano processing, the ratio of ${\gamma}$ waves in the total level of electroencephalogram becomes higher in spite of short exposure to visual stimuli in work environment, which shows that the worker becomes stressed. The ${\beta}$ wave electroencephalogram of all materials is drawn in calcarine fissure of occipital lobe to show the convergent distribution, and stronger with block-processed Nano Silver Silk(NSS). The study based on the potential risks of human diseases such as physical fatigue by electromagnetic waves, and has shown that the application of Nano Silver textile for human uses require a proper particle size of it which would not penetrate cellular tissues, and a proper binder and binding treatment for it. However, it is highly required for back-up researches to verify various aspects in applying nano silver to textile products.

Synthesis of Copper Nanoparticle by Multiple Thermal Decomposition and Electroless Ag Plating (복합적 열분해법을 이용한 구리 나노분말의 합성 및 무전해 은도금에 관한 연구)

  • PARK, JEONGSOO;KIM, SANGHO;HAN, JEONGSEB
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.70-76
    • /
    • 2017
  • To synthesize copper nanoparticle a thermal decomposition was adopted. And to solve the problem of surface oxidation of the synthesized copper powder an electroless Ag plating method was used. The size and shape of synthesized Cu nanoparticle were affected by the size of copper oxalate used as a precursor, reaction solvent, reaction temperature and amount of reducing agent. Especially reaction solvent is dominant factor to control shape of Cu nano-particle which can have the shapes of sphere, polygon and rod. In case of glycerol, it produced spherical shape of about 500 nm in size. Poly ethylene produced uniform polygonal shape in about 700 nm and ethylene glycol produced both of polygon and rod having size range between 500 and 1500 nm. The silver coated copper powder showed a high electrical conductivity.

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Synthesis of Copper Nanoparticles by a Chemical Reduction Method (화학적 환원법에 의한 구리 나노분말 합성)

  • Choi, Min Woo;Bae, Min Hwan;Ahn, Jung-Ho
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.228-234
    • /
    • 2016
  • Copper nanoparticles attract much attention as substitutes of noble metals such as silver and can help reduce the manufacturing cost of electronic products due to their lower cost and good conductivity. In the present work, the chemical reduction is examined to optimize the synthesis of nano-sized copper particles from copper sulfate. Sodium borohydride and ascorbic acid are used as reducing and antioxidant agents, respectively. Polyethylene glycol (PEG) is used as a size-control and capping agent. An appropriate dose of PEG inhibits the abnormal growth of copper nanoparticles, maintaining chemical stability. The addition of ascorbic acid prevents the oxidation of nanoparticles during synthesis and storage. Transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate the size of the synthesized nanoparticles and the coordination between copper nanoparticles and PEG. For chemical reduction, copper nanoparticles less than 100 nm in size without oxidized layers are successfully obtained by the present method.