• 제목/요약/키워드: Silver nanoparticles

검색결과 384건 처리시간 0.03초

Effects of Water Chemistry on Aggregation and Soil Adsorption of Silver Nanoparticles

  • Bae, Sujin;Hwang, Yu Sik;Lee, Yong-Ju;Lee, Sung-Kyu
    • Environmental Analysis Health and Toxicology
    • /
    • 제28권
    • /
    • pp.6.1-6.7
    • /
    • 2013
  • Objectives In this study, we investigated the influence of ionic strength and natural organic matter (NOM) on aggregation and soil adsorption of citrate-coated silver nanoparticles (AgNPs). Methods Time-resolved dynamic light scattering measurements and batch adsorption experiments were used to study their aggregation and soil adsorption behaviors, respectively. Results The aggregation rate of AgNPs increased with increasing ionic strength and decreasing NOM concentration. At higher ionic strength, the AgNPs were unstable, and thus tended to be adsorbed to the soil, while increased NOM concentration hindered soil adsorption. To understand the varying behaviors of AgNPs depending on the environmental factors, particle zeta potentials were also measured as a function of ionic strength and NOM concentration. The magnitude of particle zeta potential became more negative with decreasing ionic strength and increasing NOM concentration. These results imply that the aggregation and soil adsorption behavior of AgNPs were mainly controlled by electrical double-layer repulsion consistent with the Derjaguin-Landau-Verwey-Overbeek theory. Conclusions This study found that the aggregation and soil adsorption behavior of AgNPs are closely associated with environmental factors such as ionic strength and NOM and suggested that assessing the environmental fate and transport of nanoparticles requires a thorough understanding of particle-particle interaction mechanisms.

Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7)

  • Vizhi, Dhandapani Kayal;Supraja, Nookala;Devipriya, Anbumani;Tollamadugu, Naga Venkata Krishna Vara Prasad;Babujanarthanam, Ranganathan
    • Advances in nano research
    • /
    • 제4권2호
    • /
    • pp.129-143
    • /
    • 2016
  • The present work reports a facile, rapid and an eco-friendly method for the synthesis of silver nanoparticles using Luffa acutangula (L. acutangula) leaves extract and their antibacterial and cytotoxic effects. The synthesized silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction analysis (XRD). Additionally the topography, morphology and the elemental composition of the particles were determined by Scanning Electron Microscopy (SEM) and Energy dispersive spectrophotometric (EDS) technique and the measured particle sizes from SEM micrographs are in the range of 12.5 to 24.5nm. The in-vitro antimicrobial activity of the synthesized nanoparticles was high against gram positive Staphylococcus aureus and moderate against gram negative Escherichia coli and Pseudomonas aeruginosa strains. Further, the cytotoxic effects of synthesized AgNPs were evaluated against Human Breast Cancer (MCF 7) cell line.

단당류와 이당류를 환원제로 합성한 은 나노입자의 Resazurin 산화환원반응 메커니즘 (Resazurin Redox Reaction Mechanism Using Silver Nanoparticles Synthesized with Monosaccharides and Disaccharides)

  • 박영주;장지웅
    • 공업화학
    • /
    • 제31권3호
    • /
    • pp.299-304
    • /
    • 2020
  • 나노입자는 많은 화학합성에서 중요한 촉매역할을 한다. 촉매로 이용되는 나노입자를 합성할 때 colloidal synthesis를 많이 활용하고 있다. Colloidal synthesis를 이용해 나노입자를 합성할 경우 환원제, capping agent, shape directing agent 등이 촉매에 surface poisoning을 일으켜 촉매의 특성이 낮아질 수 있으며 합성 및 분리 과정 중 유해폐기물의 발생한다. Colloidal synthesis에서 사용되는 첨가제들의 양을 줄여 합성할 수 있는 새로운 나노입자를 합성법을 개발하여 은나노입자를 합성하였다. 결정화 기술을 이용하여 환원제, capping agent의 양을 줄일 수 있고 더욱이 합성된 나노입자 표면의 흡착되는 물질의 양을 줄여 surface poisoning을 낮출 수 있었다. 환원제로는 단당류와 이당류를 이용하여 surface poisoning이 거의 없는 은 나노입자는 resazurin의 산화환원 반응의 촉매로 이용할 수 있어 은 나노입자를 이용한 촉매 반응의 메커니즘을 분석하였다.

The relationship between precursor concentration and antibacterial activity of biosynthesized Ag nanoparticles

  • Balaz, Matej;Balazova, Ludmila;Kovacova, Maria;Daneu, Nina;Salayova, Aneta;Bedlovicova, Zdenka;Tkacikova, Ludmila
    • Advances in nano research
    • /
    • 제7권2호
    • /
    • pp.125-134
    • /
    • 2019
  • The Origanum vulgare L.-mediated synthesis of Ag nanoparticles was successfully realized within the present study. Various concentrations of the $AgNO_3$ used as a silver precursor (1, 2.5, 5, 10 and 100 mM) were used. Very rapid formation of Ag nanoparticles was observed, as only minutes were necessary for the completion of the reaction. With the increasing concentration, red shift of the surface plasmon resonance peak was observed in the Vis spectra. According to photon cross-correlation spectroscopy results, the finest grain size distribution was obtained for the 2.5 mM sample. The transmission electron microscopy analysis of this sample has shown bimodal size distribution with larger crystallites with 100 nm size and smaller around 10 nm. The antibacterial activity was also the best for this sample so the positive correlation between good grain size distribution and antibacterial activity was found. The in-depth discussion of antibacterial activity with related works from the materials science point of view is provided, namely emphasizing the role of effective nanoparticles distribution within the plant extract or matrix. The antibacterial activity seems to be governed by both content of Ag nanoparticles and their effective distribution. This work contributes to still expanding environmentally acceptable field of green synthesis of silver nanoparticles.

Interconnecting Nanomaterials for Flexible Substrate and Direct Writing Process

  • 좌용호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.58.1-58.1
    • /
    • 2012
  • Direct write technologies provide flexible and economic means to manufacture low-cost large-area electronics. In this regard inkjet printing has frequently been used for the fabrication of electronic devices. Full advantage of this method, which is capable of reliable direct patterning with line and space dimensions in the 10 to 100 um regime, is only made with all-solution based processing. Among these printable electronic materials, silver and copper nanoparticles have been used as interconnecting materials. Specially, solutions of organic-encapsulated silver and copper nanoparticles may be printed and subsequently annealed to form low-resistance conductor patterns. In this talk, we describe novel processes for forming silver nanoplates and copper ion complex which have unique properties, and discuss the optimization of the printing/annealing processes to demonstrate plastic-compatible low-resistance conductors. By optimizing both the interconnecting materials and the surface treatments of substrate, it is possible to produce particles that anneal at low-temperatures (< $200^{\circ}C$) to form continuous films having low resistivity and appropriate work function for formation of rectifying contacts.

  • PDF

The Distance-Dependent Fluorescence Enhancement Phenomena in Uniform Size Ag@SiO2@SiO2(dye) Nanocomposites

  • Arifin, Eric;Lee, Jin-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.539-544
    • /
    • 2013
  • $Ag@SiO_2@SiO_2$(FITC) nanocomposites were prepared by the simple polyol process and St$\ddot{o}$ber method. Fluorescence enhancement of fluorescein moiety (fluorescein isothiocyanate, FITC) was investigated in the presence of silver nanoparticles in $Ag@SiO_2@SiO_2$(FITC) system with varying thickness (X nm) of first silica shell. Maximum enhancement factor of 4.3 fold was achieved in $Ag@SiO_2@SiO_2$(FITC) structure with the first silica shell thickness of 8 nm and the average separation distance of 11 nm between the surface of silver nanoparticle and fluorescein moiety. The enhancement is believed to be originated from increased excitation rate of fluorescein moiety due to concentrated local electromagnetic field which was improved by interaction of light with silver nanoparticles.

은 나노입자의 크기 및 형태가 자가조립 망상구조를 갖는 투명전도성 필름의 광학 및 전기 특성에 미치는 영향 (Effects of the Particle Size and Shape of Silver Nanoparticles on Optical and Electrical Characteristics of the Transparent Conductive Film with a Self-assembled Network Structure)

  • 신용우;김규병;노수진;소순영
    • 공업화학
    • /
    • 제29권2호
    • /
    • pp.162-167
    • /
    • 2018
  • 투명전도성필름(transparent conductive film, TCF) 제조를 위해 사용되는 은 나노입자의 평균입자 크기 및 형태가 폴리에틸렌 테리프탈레이트(polyethylene terephthalate, PET) 필름 위에 코팅된 은 전도성 라인의 광학 및 전기특성에 미치는 영향을 연구하였다. Ag-CM, Ag-ME 및 Ag-EE 방식으로 제조한 은 나노입자가 Ag-EB, Ag-CR 및 Ag-PL 방식으로 제조한 은 나노입자보다 투명도는 차이가 없으나 전도도에서 우수한 특성을 보였다. 이는 입자의 크기가 앞에 언급한 세 가지 경우 평균 입도가 약 80 nm 이하이고 입도의 균일도가 양호한 반면, 뒤에 언급한 세 가지 경우 평균입도가 100 nm 이상이며 입자의 뭉침 현상이 심하게 나타난 결과와 관련이 있음을 확인하였다. 이 결과는 PET 필름 위에 코팅을 하고 건조시켜 제조한 패턴을 각각의 시료별로 SEM으로 정면과 측면에서 관찰하였을 때, 패턴의 형상 및 두께의 균일도 측면에서 나타난 결과와 동일하였다. 따라서 은 나노입자의 평균입자 크기가 작고 입자의 균일성이 유지될수록 보다 우수한 전기 특성을 나타냄을 확인하였다.

The Importance of Essential-Oils in the Green Synthesis of Silver Nanoparticles

  • Barzinjy, Azeez Abdullah
    • 대한화학회지
    • /
    • 제66권4호
    • /
    • pp.284-297
    • /
    • 2022
  • The antibacterial activity of metallic nanoparticles (NPs), especially silver (Ag), has been investigated during the course of time in various chemical reactions for antibiotics free agents. Green synthesis of metallic NPs using either microorganisms or plant-extracts has appeared as a simple and replacement to chemical and physical methods. The synthesizing of these NPs through ecofriendly methods signifies an exceedingly applicable approach for offering economical, preferring scalability and possessing negligible ecological influences. Essential-oils are among the subordinate metabolites of plants and their antibacterial anti-inflammatory characteristics have been investigated widely and are commonly attained from the aromatic plants. The usage of essential-oils as reducing agents in biosynthesizing of Ag NPs bring together the interaction of a vital antibacterial agent that simplify the nucleation and growth process within the NPs formation. This review article is offering a progressive process of Ag NPs synthesis using essential oils along with proposing the most applicable formation mechanisms and their antibacterial activities.