• Title/Summary/Keyword: Silver Paste

Search Result 131, Processing Time 0.029 seconds

Thermal Behaviors of Ag Conductive Thick Film with Firing Temperature for Plasma Display Panel (PDP용 Ag 전도성 후막의 열적거동)

  • Hwang, Seong-Jin;Lee, Sang-Wook;Kim, Hyung-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.278-278
    • /
    • 2007
  • Ag conductive thick film has been used in bus and address electrodes of PDP (Plasma display panel). In PDP fabrication, the firing temperature of electrode is normally $550{\sim}580^{\circ}C$. For the application of PDP industry, we investigated an Ag conductive thick film with firing temperature. Low melting glass frit was used in the conductive thick film. The thermal properties of Ag and frit were determined by a hot stage microscopy. Based on the our results, we suggest that the Ag conductive thick film should be considered of the firing temperature which is correlated to the shrinkage, conductivity, and shape of thick film.

  • PDF

Fabrication and packaging of the vacuum magnetic field sensor (자장 세기 측정용 진공 센서의 제작 및 패키징)

  • Park, Heung-Woo;Park, Yun-Kwon;Lee, Duck-Jung;Kim, Chul-Ju;Park, Jung-Ho;Oh, Myung-Hwan;Ju, Byeong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.5
    • /
    • pp.292-303
    • /
    • 2001
  • This work reports the tunneling effects of the lateral field emitters. Tunneling effect is applicable to the VMFS(vacuum magnetic field sensors). VMFS uses the fact that the trajectory of the emitted electrons are curved by the magnetic field due to Lorentz force. Polysilicon was used as field emitters and anode materials. Thickness of the emitter and the anode were $2\;{\mu}m$, respectively. PSG(phospho-silicate-glass) was used as a sacrificial layer and it was etched by HF at a releasing step. Cantilevers were doped with $POCl_3(10^{20}cm^{-3})$. $2{\mu}m$-thick cantilevers were fabricated onto PSG($2{\mu}m$-thick). Sublimation drying method was used at releasing step to avoid stiction. Then, device was vacuum sealed. Device was fixed to a sodalime-glass #1 with silver paste and it was wire bonded. Glass #1 has a predefined hole and a sputtered silicon-film at backside. The front-side of the device was sealed with sodalime-glass #2 using the glass frit. After getter insertion via the hole, backside of the glass #1 was bonded electrostatically with the sodalime-glass #3 at $10^{-6}\;torr$. After sealing, getter was activated. Sealing was successful to operate the tunneling device. The packaged VMFS showed very small reduced emission current compared with the chamber test prior to sealing. The emission currents were changed when the magnetic field was induced. The sensitivity of the device was about 3%/T at about 1 Tesla magnetic field.

  • PDF

Effect of Protective layer on LTCC Substrate for Thin Metal Film Patterns (LTCC 보호층 형성에 따른 박막 전극패턴에 관한 연구)

  • Kim, Yong-Suk;Yoo, Won-Hee;Chang, Byeung-Gyu;Park, Jung-Hwan;Yoo, Je-Gwang;Oh, Yong-Soo
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.349-355
    • /
    • 2009
  • Metal thin film patterns on a LTCC substrate, which was connected through inner via and metal paste for electrical signals, were formed by a screen printing process that used electric paste, such as silver and copper, in a conventional method. This method brought about many problems, such as non uniform thickness in printing, large line spaces, and non-clearance. As a result of these problems, it was very difficult to perform fine and high resolution for high frequency signals. In this study, the electric signal patterns were formed with the sputtered metal thin films (Ti, Cu) on an LTCC substrate that was coated with protective oxide layers, such as $TiO_2$ and $SiO_2$. These electric signal patterns' morphology, surface bonding strength, and effect on electro plating were also investigated. After putting a sold ball on the sputtered metal thin films, their adhesion strength on the LTCC substrate was also evaluated. The protective oxide layers were found to play important roles in creating a strong design for electric components and integrating circuit modules in high frequency ranges.

Properties of Ag Thick Films Fabricated by Using Low Temperature Curable Ag Pastes (저온 경화형 Ag 페이스트 및 이를 이용한 Ag 후막의 제조 및 특성)

  • Park, Joon-Shik;Hwang, Joon-Ho;Kim, Jin-Gu;Kim, Yong-Han;Park, Hyo-Derk;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.13 no.1
    • /
    • pp.18-23
    • /
    • 2003
  • Properties of Ag thick films fabricated by using low temperature curable silver pastes were investigated. Ag pastes were consisted of polymer resins and silver powders. Ag pastes were used for conductive or fixing materials between board and various electrical and electronic devices. Low temperature curable Ag pastes have some advantages over high temperature curable types. In cases of chip mounting, soldering properties were required for screen printed Ag thick films. In this study, four types of Ag pastes were fabricated with different compositions. Screen printed Ag thick films on alumina substrates were fabricated at various curing temperatures and times. Thickness, resistivity, adhesive strength and solderability of fabricated Ag thick films were characterized. Finally, Ag thick films produced using Ag pastes, sample A and B, cured at $150^{\circ}C$ for longer than 6 h and $180^{\circ}C$ for longer than 2 h, and $150^{\circ}C$ for longer than 1 h and $180^{\circ}C$ for 1 h, respectively, showed low resistivities of $10^{-4}$ $∼10^{-5}$ Ωcm and good adhesive strength of 1∼5 Mpa. Soldering properties of those Ag thick films with curing temperatures at solder of 62Sn/36Pb/3Ag were also investigated.

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

PA study on selective emitter structure and Ni/Cu plating metallization for high efficiency crystalline silicon solar cells (결정질 실리콘 태양전지의 고효율 화를 위한 Selective emitter 구조 및 Ni/Cu plating 전극 구조 적용에 관한 연구)

  • Kim, Minjeong;Lee, Jaedoo;Lee, Soohong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.91.2-91.2
    • /
    • 2010
  • The use of plated front contact for metallization of silicon solar cell may alternative technologies as a screen printed and silver paste contact. This technologies should allow the formation of contact with low contact resistivity a high line conductivity and also reduction of shading losses. The better performance of Ni/Cu contacts is attributed to the reduced series resistance due to better contact conductivity of Ni with Si and subsequent electroplating of Cu on Ni. The ability to pattern narrower grid lines for reduced light shading combined with the lower resistance of a metal silicide contact and improved conductivity of plated deposit. This improves the FF as the series resistance is deduced. This is very much required in the case of low concentrator solar cells in which the series resistance is one of the important and dominant parameter that affect the cell performance. A selective emitter structure with highly dopes regions underneath the metal contacts, is widely known to be one of the most promising high-efficiency solution in solar cell processing. This paper using selective emitter structure technique, fabricated Ni/Cu plating metallization cell with a cell efficiency of 17.19%.

  • PDF

High Speed and Continuous Electrospinning Printing Using Polymer Ink (고분자 폴리머 잉크를 이용한 고속 연속 전기 방사 프린팅)

  • Zhang, Da-Hai;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.379-384
    • /
    • 2015
  • Electrospinning has recently been used for micropatterning. The electrospinning method as a patterning tool has the advantage of a rapid patterning speed because it is based on a continuous printing mode rather than a drop-on-demand mode. To obtain stable continuous printing, a high molecular weight polymer must be mixed with functional materials for patterning. In this paper, polyethylene oxide (PEO) was used. The effect of polymer on viscosity and formation of a Taylor cone jet from the electrospinning nozzle was investigated. Finally, the electrospinning patterning results of a silver paste ink on a glass substrate were investigated.

Development of Tactile Sensor for Detecting Contact Force and Slip (접촉력 및 미끄러짐을 감지 가능한 촉각 센서의 개발)

  • Choi Byung-June;Kang Sung-Chul;Choi Hyouk-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.364-372
    • /
    • 2006
  • In this paper, we present a finger tip tactile sensor which can detect contact normal force as well as slip. The sensor is made up of two different materials, such as polyvinylidene fluoride (PVDF) known as piezoelectric polymer, and pressure variable resistor ink. In order to detect slip on the surface of the object, two PVDF strips are arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, a tactile sensing system is developed, which includes miniaturized charge amplifier to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

Evaluation of Piezoelectric Properties in Pb(Zr1Ti)O3-PVDF Composites for Thick Film Speaker Application (후막 스피커 응용을 위한 Pb(Zr1Ti)O3-PVDF 복합체의 압전 특성 평가)

  • Son Yong-Ho;Kim Sung-Jin;Kim Young-Min;Jeong Joon-Seok;Ryu Sung-Lim;Kweon Soon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.966-970
    • /
    • 2006
  • We reported on characteristics of the piezoelectric ceramic-polymer composite for the application of the thick-film speaker. The PVDF-PZT composites were fabricated to incorporate the advantages of both ceramic and polymer with various mixing ratios by 3-roll mill mixer. The composite solutions were coated by the conventional screen-printing method on ITO electrode coated PET (Polyethylene terephthalate) polymer film. After depositing the top-electrode of silver-paste, 4 kV/mm of DC field was applied at $120^{\circ}C$ for 30 min to poling the composite films. The value of $d_{33}$ (piezoelectric charge constant) was increased when the PZT weight percent was increased. The maximum value of the $d_{33}$ was 24 pC/N at 70 wt% PZT. But the $g{33}$ (piezoelectric voltage constant) showed the maximum value of $32mV{\cdot}m/N$ at 65 wt% of PZT powder. The SPL (sound pressure level) of the speaker fabricated with the 65:35 composite film was about 68 dB at 1 kHz.

Development of Fingertip Tactile Sensor for Detecting Normal Force and Slip

  • Choi, Byung-June;Kang, Sung-Chul;Choi, Hyouk-Ryeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1808-1813
    • /
    • 2005
  • In this paper, we present the finger tip tactile sensor which can detect contact normal force as well as slip. The developed sensor is made of two different materials, such as polyvinylidene fluoride(PVDF) that is known as piezoelectric polymer and pressure variable resistor ink. In order to detect slip to surface of object, a PVDF strip is arranged along the normal direction in the robot finger tip and the thumb tip. The surface electrode of the PVDF strip is fabricated using silk-screening technique with silver paste. Also a thin flexible force sensor is fabricated in the form of a matrix using pressure variable resistor ink in order to sense the static force. The developed tactile sensor is physically flexible and it can be deformed three-dimensionally to any shape so that it can be placed on anywhere on the curved surface. In addition, we developed a tactile sensing system by miniaturizing the charge amplifier, in order to amplify the small signal from the sensor, and the fast signal processing unit. The sensor system is evaluated experimentally and its effectiveness is validated.

  • PDF