• 제목/요약/키워드: Silver Nanoparticle

검색결과 167건 처리시간 0.02초

Effect of Plant Growth and Environmental Enhancement of Soils through Nanoparticle Application

  • Kim, Donggiun
    • International Journal of Advanced Culture Technology
    • /
    • 제8권1호
    • /
    • pp.182-187
    • /
    • 2020
  • Silver nanoparticles (AgNPs) have been manufactured in recent years and widely used in various fields. Reactive oxygen species (ROS), which occur in AgNPs, destroy cell membranes. It is widely accepted that ROS generated in this manner inhibit microorganisms growth and causes toxic effects, However, it does not affect cell membranes directly but positively affects growth in plants with cell walls. The nanoball used in this experiment is a new material that generates ROS stably and is used in aqueous solution. Results of this study indicate a 30% increase in yield of Ginseng mixed with culture soil. The analysis of soil condition after cultivation showed that the possibility of repetitive cultivation in soil mixed with Nanoball was high. This suggests that Nanoball is an antimicrobial active material due to the microbial / extermination effect of pathogenic microorganisms. Therefore, there may be potential applications in agricultural cultivation sites as a repetitive cultivation technology that reuses soil.

Tautomerism of Cytosine on Silver, Gold, and Copper: Raman Spectroscopy and Density Functional Theory Calculation Study

  • Cho, Kwang-Hwi;Joo, Sang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권1호
    • /
    • pp.69-75
    • /
    • 2008
  • Tautomerism of pyrimidine base cytosine has been comparatively examined on nanoparticle and roughened plate surfaces of silver, gold, and copper by surface-enhanced Raman scattering (SERS). The SERS spectrum was found to be different depending on the metals and their substrate conditions suggesting the dissimilar population of various tautomers of cytosine on the surfaces. The ab initio calculations were performed at the levels of B3LYP, HF, and MP2 levels of theory with the LanL2DZ basis set to estimate the energetic stability of the tautomers with the metal complexes as well as the gas phase state. The amino group and N3-coordinated tautomer was predicted to be more favorable for bonding to Au, whereas the hydroxyl and N1-coordinated zwitter ionic form is most stable with Ag and Cu as a bidentate form from the DFT calculation. The binding energy with the Ag atom is calculated to be smaller than those with the Au and Cu atoms in line with the temperature-dependent SERS spectra of cytosine.

Preparation and Characterization of Biopolymer-Based Nanocomposite Films: Chitosan-Based Nanocomposite Films with Antimicrobial Activity

  • 임종환
    • 한국포장학회:학술대회논문집
    • /
    • 한국포장학회 2006년도 정기총회 및 추계학술발표대회
    • /
    • pp.54-73
    • /
    • 2006
  • Four different types of chitosan-based nanocomposite films were prepared using a solvent casting method by incorporating with four types of nanoparticles, i.e., an unmodified montmorillonite (Na-MMT), an organically modified montmorillonite (Cloisite 30B), a Nano-silver, and a Ag-zeolite (Ag-Ion). X-ray diffraction patterns of the nanocomposite films indicated that a certain degree of intercalation was formed in the nanocomposite films, with the highest intercalation in the Na-MMT-incorporated films followed by films with Cloisite 30B and Ag-Ion. SEM micrographs showed that in all the nanocomposite films, except the Nanosilver-incorporated one, nanoparticles were dispersed homogeneously throughout the chitosan polymer matrix. Consequently, mechanical and barrier properties of chitosan films were affected through intercalation of nanoparticles, i.e., tensile strength (TS) increased by 7-16%, while water vapor permeability (WVP) decreased by 25-30% depending on the nanoparticle material tested. In addition, chitosan-based nanocomposite films, especially silver-containing ones, showed a promising range of antimicrobial activity.

  • PDF

습식 환원법에 의한 Cu 나노입자의 합성 동향 (Trends on Synthesis of Cu Nanoparticles by a Wet Reduction Method)

  • 신용무;지상수;이종현
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.11-18
    • /
    • 2013
  • Interest in copper nanoparticles has increased as an alternative for substituting silver nanoparticles because of its lower cost and less electromigration effect than silver. In this paper, the recent research trends and main results in wet-chemical synthesis of sub-100 nm Cu nanoparticles were summarized. The characteristics of synthesis were discussed with a classification such as modified polyol synthesis, modified hydrothermal synthesis, solvothermal synthesis, and the others, focussing on effects of capping agents, reductants, and pH. Information on the oxidation of synthesized copper nanoparticles were additionally commented.

A Facile Synthetic Method of Silver Nanoparticles with a Continuous Size Range from sub-10 nm to 40 nm

  • Piao, Longhai;Lee, Kyung-Hoon;Min, Byoung-Koun;Kim, Woong;Do, Young-Rag;Yoon, Sung-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.117-121
    • /
    • 2011
  • Size-controlled Ag nanoparticles (NPs) were prepared from the decomposition of Ag(I) carboxylates using ethanolamine derivatives as a reducing agent without an additional stabilizing agent. The size of the Ag NPs with a narrow size distribution (sub-10 nm to ca. 40 nm) was controlled precisely by varying the processing parameters, such as the type of reducing agent and the chain length of the carboxylate in the Ag(I) carboxylate. The optical properties, surface composition and crystallinity of the Ag NPs were characterized by ultraviolet-visible spectroscopy, gas chromatography-mass spectrometry, thermal gravimetric analysis, transmission electron microscopy and X-ray diffraction.

Microfluidic Image Cytometry (μFIC) Assessments of Silver Nanoparticle Cytotoxicity

  • Park, Jonghoon;Yoon, Tae Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4023-4027
    • /
    • 2012
  • Cytotoxicity assessment of silver nanoparticles (AgNPs) was performed using MTT-based microfluidic image cytometry (${\mu}FIC$). The $LC_{50}$ value of HeLa cells exposed to AgNPs in the microfluidic device was estimated as 46.7 mg/L, which is similar to that estimated by MTT-based IC for cells cultured in a 96 well plate (49.9 mg/L). These results confirm that the ${\mu}FIC$ approach can produce cytotoxicity data that is reasonably well-matched with that of the conventional 96 well plate system with much higher efficiency. This ${\mu}FIC$ method provides many benefits including ease of use and low cost, and is a more rapid in vitro cell based assay for AgNPs. This may aid in speeding up data acquisition in the field of nanosafety and make a significant contribution to the quantitative understanding of nanoproperty-toxicity relationships.

Human functions in innovation and sustainable marketing

  • Jat-Syu Lau;Ziyuan Li
    • Advances in concrete construction
    • /
    • 제16권2호
    • /
    • pp.97-106
    • /
    • 2023
  • This research endeavors to explore the enhancement of workforce economic efficiency through the application of nanotechnology, focusing on its economic implications. The findings of this investigation reveal that in recent years, surging global population growth and escalating demands for products and services have led to excessive resource consumption, resulting in adverse environmental consequences and altering environmental conditions-a phenomenon referred to as the economic growth dilemma. Entrepreneurs and economic stakeholders have begun to recognize the importance of sustainable development and the integration of environmental considerations into the production of goods and services. Within this context, knowledge-based economies have emerged as a driving force for sustainable business practices, particularly in the realm of nanotechnology. The integration of nanotechnology across various industries, including pharmaceuticals, agriculture, environmental management, and the chemical and petroleum sectors, as well as energy distribution, has yielded remarkable results. Consequently, this research aims to investigate the application and integration of nanotechnology in environmentally friendly silver nanoparticle production within select industries. Subsequently, it will examine the far-reaching implications of nanotechnology on economic growth and sustainable development.

은 입자 함유 유리의 광학적 특성 (Optical Properties of Silver Particle Containing Glass)

  • Choe Mun Gu;Jeong Eun Hui;Thierry Cardinal;Park Seung Han
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.10-11
    • /
    • 2003
  • Metal nanoparticle doped glasses have various applications such as use as photochromic media for optical disk data storage, the fabrication of optical waveguides and waveguide lasers, use as all-optical switches due to their nonlinear optical properties, as well as use in the color glass recycling industry. Recently, an ultrashort pulsed laser has been used as a powerful tool to make microscopic modifications to transparent Metal nano particle doped glasses. (omitted)

  • PDF

Oxidation-free Cu material for printed electronics

  • 김상호
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.16.2-16.2
    • /
    • 2009
  • Developing a low cost printing material that can replace silver for the formation of a conducting pattern is an important issue in printed electronics. We report a novel approach using a non-oxidized copper material during the printing and sintering process under ambient conditions, which was previously considered unachievable. An attempt was made to understand the conversion process of cuprous oxide nanoparticle aggregates on metallic copper crystals through chemical reduction in the solution phase. The detailed mechanism for this conversion, including the role of the surfactant and crystal growth, was examined.

  • PDF