• Title/Summary/Keyword: Silicone monomer

Search Result 36, Processing Time 0.021 seconds

Bonding of conventional provisional resin to 3D printed resin: the role of surface treatments and type of repair resins

  • Lim, Na-Kyung;Shin, Soo-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.5
    • /
    • pp.322-328
    • /
    • 2020
  • PURPOSE. This study evaluated the shear bond strength between 3D printed provisional resin and conventional provisional resin depending on type of conventional provisional resin and different surface treatments of 3D printed resin. MATERIALS AND METHODS. Ninety-six disc-shaped specimens (Ø14 mm × 20 mm thickness) were printed with resin for 3D printing (Nextdent C&B, Vertex-Dental B. V., Soesterberg, Netherlands). After post-processing, the specimens were randomly divided into 8 groups (n=12) according to two types of conventional repair resin (methylmethacrylate and bis-acryl composite) and four different surface treatments: no additional treatment, air abrasion, soaking in methylmethacrylate (MMA) monomer, and soaking in MMA monomer after air abrasion. After surface treatment, each repair resin was bonded in cylindrical shape using a silicone mold. Specimens were stored in 37℃ distilled water for 24 hours. The shear bond strength was measured using a universal testing machine at a crosshead speed of 0.5 mm/min. Failure modes were analyzed by scanning electron microscope. Statistical analysis was done using one-way ANOVA test and Kruskal-Wallis test (α=.05). RESULTS. The group repaired with bis-acryl composite without additional surface treatment showed the highest mean shear bond strength. It was significantly higher than all four groups repaired with methylmethacrylate (P<.05). Additional surface treatments, neither mechanical nor chemical, increased the shear bond strength within methylmethacrylate groups and bis-acryl composite groups (P>.05). Failure mode analysis showed that cohesive failure was most frequent in both methylmethacrylate and bis-acryl composite groups. CONCLUSION. Our results suggest that when repairing 3D printed provisional restoration with conventional provisional resin, repair with bis-acryl composite without additional surface treatment is recommended.

Synthesis of Poly(vinyl acetate) Using Supercritical Carbon Dioxide and Subsequent Preparation of Poly(vinyl alcohol) (초임계이산화탄소를 이용한 폴리비닐아세테이트의 합성과 그로부터 폴리비닐알코올의 제조)

  • Choe, Woo-Hyuk;Pham, Quang Long;Shim, Jae-Jin
    • Clean Technology
    • /
    • v.16 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • Vinyl acetate(VAc) was dispersion-polymerized using supercritical carbon dioxide that has many environmental advantages. To get poly(vinyl acetate) (PVAc) of larger molecular weights from conventional emulsion polymerization, VAc was polymerized at temperatures between 333.15 and 343.15 K and pressures between 20 and 40 MPa with initiator (0.5 ~ 5% of monomer) and silicone-based stabilizer (1 ~ 10% of monomer) for 2 ~ 50 hr. The resulting PVAc was analyzed to see the variations in the yield and the molecular weight. The final product of this research, PVA (poly(vinyl alcohol)), was prepared from PVAc by saponification. The effect of saponification conditions on the yield and the molecular weight of polymer were also studied.

Synthesis of Modified Silane Acrylic Resins and Their Physical Properties as Weather-Resistant Coatings

  • Yoo, Gyu-Yeol;Kim, Ji-Hyun;Park, Hong-Soo;Kim, Young-Geun;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • To prepare weather-resistant modified silane acrylic resin coatings for an architectural purpose, tetrapolymers were synthesized by radical polymerization. 3-Methacryloxypropyltrimethoxysilane (MPTS) as a silicone monomer and n-butyl acrylate, methyl methacrylate, and n-butyl methacrylate as acrylic monomers were used. The composition of monomers was adjusted to fix the glass transition temperature of acrylic polymer for $20^{\circ}C$. The composition of MPTS in the synthesized polymer were varied from 10 wt% to 30 wt%. On the basis of synthesized resin amber paints were prepared and their physical properties and effects on weatherability were examined. The presence of MPTS in modified silane acrylic resins generally resulted in low molecular weight and broad molecular weight distribution, and also lowered the viscosity of the copolymers. The coated films prepared from these resins showed good and balanced properties in general. Adhesion to the substrate was outstanding in particular. Weatherability tests were carried out in three different types such as outdoor exposure, QUV, and SWO. The test results showed that the modified silane acrylic resins containing 30 wt% of MPTS had superior weathering properties.

Property Enhancement of SiR-EPDM Blend Using Electron Beam Irradiation

  • Deepalaxmi, R.;Rajini, V.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.984-990
    • /
    • 2014
  • Polymers are the most commonly used di-electrics because of their reliability, availability, ease of fabrication and cost. The commercial and industrial demand for advanced polymeric materials which are capable of being used in harsh environment is need of the hour. The study of the effect of electron beam irradiation on polymeric materials is an area of rapidly increasing interest. This paper discusses the resultant beneficial effects of electron beam irradiation on the SiR-EPDM blend having 50:50 composition. The changes in mechanical and electrical properties of SiR-EPDM blend which are exposed to three different doses of electron beam radiation namely 5 Mrad, 15 Mrad and 25 Mrad are presented. The irradiated blends are analyzed for their electro-mechanical and physico chemical properties. The electrical changes induced by irradiation are investigated by arc resistance, surface resistivity and volume resistivity measurements as per ASTM standards. The mechanical changes are observed by the measurement of tensile strength and elongation at break. Physico chemical investigation has been done using the FTIR, in order to investigate the irradiation induced chemical changes.

Optimum Process Condition by Experimental Design Method for the Synthesis of Methylchlorosilanes(MCS) (실험계획법에 의한 메틸염화실란 합성의 최적공정조건)

  • Cho, Chul Kun;Han, Kee Do
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.394-398
    • /
    • 1998
  • An optimum synthetic condition was studied for the MCS used as a silicone monomer. The contact mixture was made from the four component catalyst system($CuCl/ZnCl_2/Sn/Cd$) and silicon particles. The contact mass was used for a series of experiments with methyl chloride, which were designed and done to explore the optimum condition for MCS synthesis by an experimental design method. The optimum temperature and MeCl flow rate, which were obtained using 50g contact mass at 60rpm and 1 atm, were in the range of $300-305^{\circ}C$ and of 70-80ccm. Also a continuous run was performed to confirm the conditions. The results showed that the average reaction rate and selectivity were 170(g-MCS/hr.kg-Si) and 0.05 respectively at 67% conversion of MeCl and 92% silicon utilization rate. Also the parameters of overall reaction rate equation and a total pressure were estimated on the basis of the results of the continuous run.

  • PDF

The Study of Characteristics on EPDM, NBR, FKM, VMQ and FVMQ for Sealing Applications to Lithium Ion Battery (리튬 이온 전지 씰링에의 응용을 위한 EPDM, NBR, FKM, VMQ 및 FVMQ 특성연구)

  • Seo, Kwan-Ho;Cho, Kwang-Soo;Yun, In-Sub;Choi, Woo-Hyuk;Hur, Byung-Ki;Kang, Dong-Gug
    • Elastomers and Composites
    • /
    • v.45 no.3
    • /
    • pp.212-216
    • /
    • 2010
  • The materials of the lithium ion battery gasket require chemical resistance to the electrolyte, electrical insulating, compression set, anti-contamination and heat resistance. To estimate suitability for rubber which has better performance to compression set than PFA, each compound were made with various rubbers, such as EPDM, NBR, FKM, FVMQ, VMQ and we checked the characteristics of each compound. Samples from each compound was deposited in Propylene Carbonate and tested for changing of Hardness and Volume during 1,000 hr with $80^{\circ}C$. EPDM and VMQ showed good performance to chemical resistance to the electrolyte, and also we could get the values over $10^{10}{\Omega}cm$ on volume resistance basis in electrical insulating. EPDM and VMQ were judged as the most suitable material.