• Title/Summary/Keyword: Silicone Carbide (SiC)

Search Result 7, Processing Time 0.022 seconds

Effect of the Pressure on the Interface and Thermal Conductivity of Polypropylene-SiC Composites (Polypropylene-SiC 복합재료 제조시 성형압력이 계면 및 열전도도에 미치는 영향)

  • Yim, Seung-Won;Lee, Ji-Hoon;Lee, Yong-Gyu;Lee, Sung-Goo;Kim, Sung-Ryong
    • Journal of Adhesion and Interface
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 2009
  • The effect of pressure on the thermal conductivity in two-phase composite system was studied. Thermally conductive polypropylene (PP)/silicon carbide (SiC) composites were prepared by applying various pressures from 0 to 20 MPa. The thermal conductivity of the composite was 1.86 W/mK at 20 MPa, increased by 40% compared to the value of at 0 MPa. It was 9 times higher than that of unfilled polypropylene. It implies the pressure induces the easy path for phonon transport. Also, the experimental values were compared with Maxwell's prediction and Agari's prediction. Agari's prediction gave a better agreement compared to that of Maxwell's prediction due to the consideration of interactions between filler-filler and filler-polymer.

  • PDF

Characteristics of Ni/SiC Schottky Diodes Grown by ICP-CVD

  • Gil, Tae-Hyun;Kim, Han-Soo;Kim, Yong-Sang
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.3
    • /
    • pp.111-116
    • /
    • 2004
  • The Ni/SiC Schottky diode was fabricated with the $\alpha$-SiC thin film grown by the ICP-CVD method on a (111) Si wafer. $\alpha$-SiC film has been grown on a carbonized Si layer in which the Si surface was chemically converted to a very thin SiC layer achieved using an ICP-CVD method at $700^{\circ}C$. To reduce defects between the Si and $\alpha$-SiC, the surface of the Si wafer was slightly carbonized. The film characteristics of $\alpha$-SiC were investigated by employing TEM (Transmission Electron Microscopy) and FT-IR (Fourier Transform Infrared Spectroscopy). Sputterd Ni thin film was used as the anode metal. The boundary status of the Ni/SiC contact was investigated by AES (Auger Electron Spectroscopy) as a function of the annealing temperature. It is shown that the ohmic contact could be acquired beyond a 100$0^{\circ}C$ annealing temperature. The forward voltage drop at 100A/cm was I.0V. The breakdown voltage of the Ni/$\alpha$-SiC Schottky diode was 545 V, which is five times larger than the ideal breakdown voltage of the silicon device. As well, the dependence of barrier height on temperature was observed. The barrier height from C- V characteristics was higher than those from I-V.

Development of 3.5kW Single Phase PV Inverter using SiC MOSFET (SiC MOSFET를 적용한 3.5kW급 단상 PV 인버터 개발)

  • Kim, Jye-Won;Kim, Myeong-Gi;Joo, Dongmyoung;Choi, Jun-Hyuk;Kim, Jin-Hong
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.353-354
    • /
    • 2020
  • 본 논문에서는 SiC (Silicone Carbide) MOSFET 기반 Buck-Unfolder 토폴로지를 적용한 단상 태양광 인버터를 개발한다. 개발한 인버터의 성능 평가를 위해 3.5kW 급 prototype의 효율 및 전고조파 왜율(THD)을 분석한다.

  • PDF

Microwave Absorbance of Polymer Composites Containing SiC Fibers Coated with Ni-Fe Thin Films

  • Liu, Tian;Kim, Sung-Soo;Choi, Woo-cheal;Yoon, Byungil
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.375-378
    • /
    • 2018
  • Conductive and dielectric SiC are fabricated using electroless plating of Ni-Fe films on SiC chopped fibers to obtain lightweight and high-strength microwave absorbers. The electroless plating of Ni-Fe films is achieved using a two-step process of surface sensitizing and metal plating. The complex permeability and permittivity are measured for the composite specimens with the metalized SiC chopped fibers dispersed in a silicone rubber matrix. The original non-coated SiC fibers exhibit considerable dielectric losses. The complex permeability spectrum does not change significantly with the Ni-Fe coating. Moreover, dielectric constant is sensitively increased with Ni-Fe coating, owing to the increase of the space charge polarization. The improvements in absorption capability (lower reflection loss and small matching thickness) are evident with Ni-Fe coating on SiC fibers. For the composite SiC fibers coated with Ni-Fe thin films, a -35 dB reflection loss is predicted at 7.6 GHz with a matching thickness of 4 mm.

Experimental Study on the Friction and Wear Characteristics of Contact Sealing Unit for a Water Turbine (수차용 봉수장치의 마찰.마모특성에 관한 실험적 연구)

  • Kim, Chung-Kyun;Sihn, Ihn-Cheol;Lim, Kwang-Hyeon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.515-518
    • /
    • 2006
  • This paper presents the friction and wear characteristics of contact type sealing unit for a water turbine of a small hydro-power generation, which Is to stop a leakage of a circulating water from a outside of an impeller to an inside of a rolling bearing. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Vickers hardness and the hardness of silicone carbide of SiC is 714.1 in Vickers hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces aye a dry friction a water film friction and a mixed friction that is contaminated by a dust, silt and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components

  • PDF

Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique (겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조)

  • Jeong, Kyung-Chai;Kim, Yeon-Ku;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.

A Study on the Friction and Wear Characteristics of Contact Sealing Units for a Small Hydro-power Turbine Under Various Rubbing Conditions (마찰접촉조건에 따른 소수력 수차용 밀봉장치의 마찰.마멸특성 연구)

  • Kim, Chung-Kyun
    • Tribology and Lubricants
    • /
    • v.22 no.6
    • /
    • pp.314-319
    • /
    • 2006
  • In this paper, the friction and wear characteristics of contact type sealing unit far a water turbine have been presented. The sealing unit for a small hydropower generation is to stop a leakage of circulating water from an outside of an impeller to an inside of a rolling bearing. The friction heating between a seal ring and a seal seat may radically increase a surface temperature in which increase a power loss and wear on the rubbing surface. The surface wear strongly affect to the seal life of a mechanical face seal. In this study, the hardness of a stainless steel in which is a heat-treated is 892.8 in Victors hardness and the hardness of silicone carbide of SiC is 714.1 in Victors hardness. The surface hardness of a heat-treated stainless steel is 25% high compared with that of a ceramic material of SiC. The contact modes of rubbing surfaces are a dry friction, a water film friction and a mixed friction that is contaminated by a dust, silt, and moistures, etc. These two factors of a contact rubbing modes and a material property are very important parameters on the tribological performance such as a friction and wear between a seal ring and a seal seat in primary sealing unit. The experimental result shows that the surface hardness of a seal material is very important on the friction coefficient and a wear volume. Thus, the results recommend higher hardness of a seal material, which may reduce a friction loss and increase a wear life of primary seal components.