• Title/Summary/Keyword: Silicone

Search Result 1,466, Processing Time 0.022 seconds

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.

Effects of silicone fluid in silicone rubber composite (실리콘 고무 복합재료의 물성에 대한 실리콘 오일의 영향)

  • Han, D.H.;Kang, D.P.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1670-1672
    • /
    • 1996
  • Silicone rubber composite is very suitable for insulation materials because of it's hydrophobicity, mass productivity, and design flexibility. A study of the diffusion of silicone fluid from the bulk to the surface of the silicone rubber composite using dynamic contact angle meter and scanning electron microscopy(SEM) is reported. A study of the mechanical strength of the silicone rubber composite having various silicone fluids and fluid contents is also reported. It has been found that the kind of silicone fluid affects the diffusion rate of the silicone fluid from the bulk to the surface of the silicone rubber composite after artificial pollution.

  • PDF

Effects of Hydroxy Silicone Oil on Insulation Properties of Silicone Rubber(1) (Hydroxy Silicone Oil이 실리콘 고무의 절연특성에 미치는 영향(1))

  • 강동필;박효열;안명상;이웅재;이후범;오세호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1001-1007
    • /
    • 2003
  • The silicone fluids have been generally used as processing agent in silicone rubber(SIR) compounding. The addition of hydroxy silicone (HS) fluids to SIR for insulator housing material is required to meet the good electrical performance and the good processability. In this study, SIR with HS fluids was evaluated to investigate how the kinds of them affect insulation properties. The contact angle of the virgin sample of 40-HS SIR was low and its recovery rate was also slow. The recovery rate of 50-HS SIR was the highest being decreased with the viscosity increase of HS fluids. The tracking resistances and the corona aging resistance of 70-HS SIR and 1,040-HS SIR were excellent Tracking resistance depended largely on heat resistance of silicone fluids. But arc resistance didn't depend merely on the kind of silicone fluids.

Properties of Silicone Rubber According to the Addition of Different Particle Size of ATH (ATH 의 입도에 따른 실리콘 고무의 특성)

  • Park, Hyo-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Kim, Dae-Whan;Lee, Hoo-Bum;Oh, Se-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.216-219
    • /
    • 2002
  • Much quantity of anti-tracking agent, ATH is added to the silicone rubber for the protection of silicone rubber against surface discharge. Hydrophobicity recovery properties of silicone rubber could be different by the content, surface treatment state and particle size of ATH. Because hydrophobicity of silicone rubber is depend much on the surface state of ATH. In this paper, the properties of silicone rubber is investigated according to the addition of different particle size of ATH to the silicone rubber. Hydrophobicity recovery properties and arc resistance of silicone rubber were investigated according to the addition of different particle size of ATH. Hydrophobicity recovery properties of silicone rubber were evaluated by the measurement of contact angle.

  • PDF

Physical Properties of Silicone Rubber/Clay Composites According to the Clay Type and Modification (Clay의 종류 및 표면처리가 silicone rubber/clay 복합체의 물성에 미치는 영향)

  • Yoon, Jin-San;Kim, Eung-Soo;Kim, Eun-Jeong;Lee, Tae-Hwa
    • Elastomers and Composites
    • /
    • v.44 no.3
    • /
    • pp.260-268
    • /
    • 2009
  • Modification of clay surface was attempted by treating the clay with bis[(3-triethoxysilylpropyl)tetra sulfide (TSS) to raise the hydrophobicity and to induce a chemical reaction between the clay and the high temperature vulcanization-type silicone rubber matrix with purpose of improving the compatibility between the components, and thereby Na-$MMTS_4$ and Fe-$MMTS_4$ were synthesized by treating Na-MMT and Fe-MMT with TSS, respectively. Silicone rubber/clay composites were prepared by compounding the clays with silicone rubber. Thermal stability and mechanical properties were evaluated as a function of the clay types and the surface modification.

The study on PV module development using the silicone encapsulation (Encapsulation용 silicone을 사용한 모듈제조 공정에 대한 연구)

  • Jung, In-Sung;Lee, Woo-Jin;Lee, Bum-Su;Yang, O-Bong;Jung, En-Suk;Kim, Chong-Yeal
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.130.1-130.1
    • /
    • 2011
  • Nowadays, the number of PV module corporation is increasing due to demand growth of silicon solar module. However almost study of module is research about increasing of efficiency for it. This study is evaluation and development for process of module using the silicone encapsulation material instead of existing EVA sheet. We are changed adding material ratio on silicone and thickness of silicone. So we get better efficiency than EVA sheet through the evaluation for silicone liquid and modulation. Also, we are test after establishing manufacture system being able to quicker than existing modules line. The result of EVA sheet is average 207.47W and silicone material is 211.32W so we think that silicone is better than EVA sheet.

  • PDF

The Behavior of Low Molecular Weight Silicone Fluids in Silicone Rubber (자외선 조사에 따른 실리콘 교무에 존재하는 가동성 저분자량 성분의 거동)

  • Hong, Joo-Il;Lee, Ki-Taek;Seo, Yu-Jin;Hwang, Sun-Mook;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.312-315
    • /
    • 2004
  • In this paper we investigated the behavior of low molecular weight silicone fluids in silicone rubber by W treatment with solvent-extraction and GPC. It was shown that LMW quantity which was extracted by solvent-extraction was decreased in UV treatment time. $200{\sim}450\;g/mol$ distribution of LMW silicone fluid was contributed to recovery. It was similar to result from corona discharge. Morphological analysis was investigated by scanning electron microscope(SEM) and X-ray diffraction (XRD). The behavior of LMW silicone fluids in silicone rubber which was contributed to recovery was discussed.

  • PDF

A numerical study on the residual stress in LED encapsulment silicone after curing and cooling (경화 및 냉각을 거친 LED 패키징 실리콘의 잔류응력에 대한 수치해석적 고찰)

  • Song, M.J.;Kim, K.H.;Kang, J.J.;Kim, H.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.425-428
    • /
    • 2009
  • Silicone is recently used for LED chip encapsulment due to its good thermal stability and optical transmittance. To mold a solid-state silicone encapsulment, curing by mixing at elevated temperatures followed by cooling is necessary. As the silicone molding process is involved in healing and subsequent cooling, the thermal residual stress, which causes mechanical warpage or optical birefringence in the final silicone encapsulment, may be induced if there are non-uniformities in cured silicone material properties or encapsulment shape design. The prediction of residual stress is necessary to design a high-quality silicone molding process. Therefore, in the present paper, a numerical parametric study was attempted to evaluate the heating and cooling effects on the thermal residual stress induced in the cured silicone.

  • PDF

A Study on the Dielectric Properties of Mica-reinforced Silicone Composites (마이카 강화 실리콘 복합재료의 제작과 그 유전적 특성에 관한 연구)

  • 조정수;곽영순;김순태;박차수;박정후
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.640-651
    • /
    • 1992
  • This paper describes the electric properties of mica reinforced silicone composites with the parameter of curing condition of silicone resin, application amount of silane coupling agent to the mica paper and the mica wt% to the composite. Heat-resistant silicone resin and mica paper made of mica flakes are used to prepared the mica/silicone composite as matrix and filler, respectively. To improve the dielectric properties and interfacial adhesion between matrix and filler, silane coupling agent is applied on the mica paper. As for matrix, tan$\delta$ value of 30$0^{\circ}C$ heat-treated silicone resin is the lowest under 1%. The optimal wt% of coupling agent is 0.3% to the weight of mica paper. 80 wt% of mica as filler to the mica/silicone composite shows the best electric properties. And the mica reinforced silicone composite shows good high-frequency and mechanical tensile stress properties.

  • PDF

Electrical Properties of Silicone Rubber with Different Particle Size and Amount of ATH (ATH의 입자크기 및 첨가량에 따른 실리콘 고무의 전기적 특성)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae;Lee, Tae-Hui;Lee, Tae-Joo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.227-230
    • /
    • 2003
  • Silicone rubber has very excellent chemical stability and hydrophobicity. A hydrophobic surface can prevent the formation of continuous water films on the surface in wet and heavily contaminated conditions. This phenomenon contributes to the suppression of leakage current and partial discharges on insulator surfaces. Silicone rubber has been used much for housing materials of polymer insulators. ATH is added to the silicone rubber for improvement of its resistance against surface discharge. In this paper, ATH with different particle size and content was added to the silicone rubber during compounding. Silicone rubber was deteriorated by a corona treatment. Hydrophobicity recovery rate after corona treatment and arc resistance of silicone rubber were investigated. Hydrophobicity recovery rate of silicone rubber was evaluated by the measurement of contact angle. Arc resistance was evaluated by measuring weight loss of silicone rubber after arc resistance test. It was observed that the hydrophobicity recovery rate and arc resistance of silicone rubber were different when different particle size and content of ATH were added.

  • PDF