• Title/Summary/Keyword: Silicon-Steel Strip

Search Result 6, Processing Time 0.024 seconds

Experimental Investigation of Working Fracture in Silicon Steel Strip Occurring Due to Change in Roll-Gap Profile in Cold Rolling (실리콘 강판 냉간압연 중 발생하는 롤갭 형상변화에 의한 가공파손에 관한 실험적 분석)

  • Byon, Sang-Min;Lee, Jae-Hyeon;Kim, Sang-Rok;Choi, Hyeon-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1299-1304
    • /
    • 2010
  • We examined the working fracture behavior of a silicon-steel strip caused by deformation deviation by performing a pilot rolling test. The deformation deviation resulted in the edges (or center portion) of the strip being stretched and the other parts being compressed in the rolling direction; this was because of different degrees of deformation in these parts. We designed roll grooves shape to reflect the role of roll bending, which generates waviness in the strip in an actual cold rolling process, into the pilot rolling test. The material used in the rolling test was highsilicon steel (about 3%). The results of the test showed that the type of fracture in the strip specimen varied with the magnitude of the deformation deviation. The tensile stress produced at the strip edges because of the center waviness in the rolling direction was a crucial factor that resulted in edge cracking and a zigzag-shaped fracture at the center.

FEM Based Approach to Predict Rolling Force and Strip Thickness in 4-High Cold Rolling Mill Driven by Backup-Roll (유한요소법을 이용한 보강롤 구동 4단 냉간압연기에서의 압연하중 및 스트립 두께 예측)

  • Lee, Jae-Hyun;Byon, Sang-Min;Park, Heung-Slk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.129-135
    • /
    • 2009
  • In this paper, a finite element model is presented for the prediction of roll force and strip thickness in a backup-roll-drive mill. The proposed FE model is focused mainly on analyzing the elastic/plastic behavior between a work roll and a strip as well as the rigid/plastic behavior between a backup roll and a work roll. The capability of the proposed model is demonstrated through application to 4-high silicon steel rolling mill at POSCO. Results show that the predicted roll force and strip thickness rolled accurately agree with the measured them. It is also illustrated that the proper position of work roll displaced to one side from the vertical centerline of the backup-roll may be determined by minimizing the horizontal force of work roll.

  • PDF

Technology of Stip Rolling of Shadow Mask Steel Plate By Reversing Cold Rolling Mill (가역식 냉간압연기의 Shadow Mask재 압연기술)

  • 김광수;박성권;이중웅;김종호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.403-411
    • /
    • 1999
  • The steel plate for shadow mask is used in a Cathode-ray tube of TV monitor and is the strictest product in surface quality because hundreds thousand of holes are perforated in a plane of 25 ${\times}$25 inches. To mass-produce this product, a reversible cold rolling mill for silicon steel was used and the rolling technology and the activity for quality improvement are described in this work. Because the steel plate is a mild steel, which is very sensitive to strip-breakage even in a low tension, we reset the minimum tension values matching to the operating conditions. The roll mark due to the multi-segmented araangement of shape controlling roll was prevented by hardening the intermediate shape controlling roll and by changing the existing working-roll into a HSS (Hig Speed Steel) roll. The scratch caused by the speed difference between a idle roll and a strip was prevented by increasing the roll roughness. With these activities, the steel plate for shadow mask can be stable. The continuous improvement of quality is, however, required for the customer satisfaction both of domestic and overseas market.

  • PDF

Development of High Efficiency Self Diagnosis Type Neon Transformer using Groin Direction of Non-Oriented Silicon Steel Strip (압연 방향을 적용한 자체 진단형 고효율 네온관용 변압기)

  • 변재영;김윤호
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • In this paper, a high efficiency leakage transformer for neon tube is developed to improve its power factor, to reduce its core loss and weight by using a technique of shape optimization and grain direction of non-oriented silicon steel strip. A protection circuit is designed for all types of neon transformer loaded with one or more neon tubes. Whenever the neon tube fails to be started up or comes to the life end, or encounters faults with open-circuits at the output terminals of the neon transformer, the electronic type protection circuit will be initiated to avoid more critical hazards. These neon transformers need a electronic type protection circuit to prevent from current stresses on circuit components by neon tube fail. The input of the transformer is automatically cut on when the abnormal condition occurs, preventing waste of no-load power.

Relation of Grain Size with Magnetic Domain Wall for Tertiary Recrystallized 3% Si-Fe Strip (3차 재결정에 의한 극박 방향성 규소강판의 결정립 크기와 자벽수와의 관계)

  • ;K. I. Arai
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.3
    • /
    • pp.165-169
    • /
    • 1996
  • The relationship between grain size and number of magnetic domain walls for tertiary recrystallized ultra thin 3 % Si-Fe strips was investigated. It was found that the strips with different grain size can be produced by controlling the inserting speed of sample in annealing furnace. Though grain size of the stirip became smaller than 1mm, $B_{8}$ of high value above 1.95T was obtained. But $H_{c}$ increased with decaying the grain size. The magnetic domains and losses of the ultra thin grain oriented silicon steel with smaller grian size were observed. The eddy current losses of the strips were decreased with decreasing the grain size in high frequency range because strips with smaller grain have narrower magnetic domain wall spacings. But Hysteresis losses of the strips with smaller grain have high value in low frequency range. Therefore the iron loss of ultra thin grain oriented silicon steel could be controlled by the grain size. It was clarified that the minumum tatal loses depended on the exciting frequency and grain size.

  • PDF