• Title/Summary/Keyword: Silicon vapor

Search Result 670, Processing Time 0.028 seconds

ICPCVD를 이용하여 저온 증착된 나노 결정질 실리콘 기반 박막트랜지스터의 전기적 특성 향상을 위한 플라즈마 처리

  • Choe, U-Jin;Jang, Gyeong-Su;Baek, Gyeong-Hyeon;An, Si-Hyeon;Park, Cheol-Min;Jo, Jae-Hyeon;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.343-343
    • /
    • 2011
  • 저온에서의 Thin Film Transistor (TFT) 혹은 Nonvolatile memory (NVM) 등의 MOS 구조 소자들의 높은 전기적 특성에 관한 연구들이 진행 되면서 mobility와 stability 그리고 구조화의 용이성에 대한 연구가 진행됨에 따라 amorphous silicon의 결정화를 통해 전기적 특성을 향상 시킨 Nanocrystalline silicon (nc-Si)/Microcrystalline silicon (${\mu}c$-Si)에 대한 연구가 관심을 받고 있다. 본 논문에서는 ${\leq}300^{\circ}C$에서 Inductively coupled plasma chemical vapor deposition를 이용한 TFT을 제작하였다. 가스비, 온도, 두께에 따른 결정화 정도를 Raman spectra를 통해 확인한 후 Bottom gate와 Top gate 구조의 TFT를 제작 하고 결정화에 따른 전기적 특성 향상과 그의 덧붙여 플라즈마 처리를 통한 특성 향상을 확인 하였다.

  • PDF

Bonding and Etchback Silicon-on-Diamond Technology

  • Jin, Zengsun;Gu, Changzhi;Meng, Qiang;Lu, Xiangyi;Zou, Guangtian;Lu, Jianxial;Yao, Da;Su, Xiudi;Xu, Zhongde
    • The Korean Journal of Ceramics
    • /
    • v.3 no.1
    • /
    • pp.18-20
    • /
    • 1997
  • The fabrication process of silicon-diamond(SOD) structure wafer were studied. Microwave plasma chemical vapor deposition (MWPCVD) and annealing technology were used to synthesize diamond film with high resistivity and thermal conductivity. Bonding and etchback silicon-on-diamond (BESOD) were utilized to form supporting substrate and single silicon thin layer of SOD wafer. At last, a SOD structure wafer with 0.3~1$\mu\textrm{m}$ silicon film and 2$\mu\textrm{m}$ diamond film was prepared. The characteristics of radiation for a CMOS integrated circuit (IC) fabricated by SOD wafer were studied.

  • PDF

Preparation and Characterization of Silicon Carbide Nanofiber (탄화규소 나노섬유의 제조 및 물성)

  • 신현익;송현종;김명수;임연수;이재춘
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.376-380
    • /
    • 2000
  • Carbon nanofibers with an average diameter of 100nm were reacted with SiO vapor generated from a mixture of Si and SiO2 to produce silicon carbide nanofibers at temperature ranging 1200∼1500$^{\circ}C$ under vacuum. The nanofiber reacted at 1200$^{\circ}C$ for two hours consisted of silicon carbide with an average crystallite size of 10-20nm, amorphous silica and a significant amount of unreacted carbon. The surface area of silicon carbide nanofiber, obtained after removal of amorphous silica and unreacted carbon from converted carbon nanofibers at 1200$^{\circ}C$, was as high as 150㎡/g. With increasing reaction temperature to 1500$^{\circ}C$, the surface area was decreased to 14㎡/g. Growth of SiC crystallite size with increasing conversion temperature of carbon nanofiber was confirmed from Scherrer formula using the (111) diffraction line and TEM images of converted carbon nanofibers.

  • PDF

Fabrication of low-stress silicon nitride film for application to biochemical sensor array

  • Sohn, Young-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.357-361
    • /
    • 2005
  • Low-stress silicon nitride (LSN) thin films with embedded metal line have been developed as free standing structures to keep microspheres in proper locations and localized heat source for application to a chip-based sensor array for the simultaneous and near-real-time detection of multiple analytes in solution. The LSN film has been utilized as a structural material as well as a hard mask layer for wet anisotropic etching of silicon. The LSN was deposited by LPCVD (Low Pressure Chemical Vapor Deposition) process by varing the ratio of source gas flows. The residual stress of the LSN film was measured by laser curvature method. The residual stress of the LSN film is 6 times lower than that of the stoichiometric silicon nitride film. The test results showed that not only the LSN film but also the stack of LSN layers with embedded metal line could stand without notable deflection.

Fabrication and Properties of pn Diodes with Antimony-doped n-type Si Thin Film Structures on p-type Si (100) Substrates (p형 Si(100) 기판 상에 안티몬 도핑된 n형 Si박막 구조를 갖는 pn 다이오드 제작 및 특성)

  • Kim, Kwang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.39-43
    • /
    • 2017
  • It was confirmed that the silicon thin films fabricated on the p-Si (100) substrates by using DIPAS (DiIsoPropylAminoSilane) and TDMA-Sb (Tris-DiMethylAminoAntimony) sources by RPCVD method were amorphous and n-type silicon. The fabricated amorphous n-type silicon films had electron carrier concentrations and electron mobilities ranged from $6.83{\times}10^{18}cm^{-3}$ to $1.27{\times}10^{19}cm^{-3}$ and from 62 to $89cm^2/V{\cdot}s$, respectively. The ideality factor of the pn junction diode fabricated on the p-Si (100) substrate was about 1.19 and the efficiency of the fabricated pn solar cell was 10.87%.

  • PDF

Detection of Volatile Alcohol Vapors Using Silicon Quantum Dots Based on Porous Silicon (다공성 실리콘을 근거한 실리콘 양자점을 이용한 휘발성 알콜 증기의 감지)

  • Cho, Bomin;Um, Sungyong;Jin, Sunghoon;Choi, Tae-Eun;Yang, Jinseok;Cho, Sungdong;Sohn, Honglae
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.117-121
    • /
    • 2010
  • Silicon quantum dots base on photoluminescent porous silicon were prepared from an electrochemical etching of n-type silicon wafer (boron-dopped<100> orientation, resistivity of 1~10 ${\Omega}-cm$) and used as a alcohol sensor. Silicon quantum dots displayed an emission band at the wavelength of 675 nm with an excitation wavelength of 480 nm. Photoluminescence of silicon quantum dots was quenched in the presence of alcohol vapors such as methanol, ethanol, and isopropanol. Quenching efficiencies of 21.5, 32.5, and 45.8% were obtained for isopropanol, ethanol, and methanol, respectively. A linear relationship was obtained between quenching efficiencies and vapor pressure of analytes used. Quenching photoluminescence was recovered upon introducing of fresh air after the detection of alcohol. This provides easy fabrication of alcohol sensor based on porous silicon.

Double treated mixed acidic solution texture for crystalline silicon solar cells

  • Kim, S.C.;Kim, S.Y.;Yi, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.323-323
    • /
    • 2010
  • Saw damage of crystalline silicon wafer is unavoidable factor. Usually, alkali treatment for removing the damage has been carried out as the saw damage removal (SDR) process for priming the alkali texture. It usually takes lots of time and energy to remove the sawed damages for solar grade crystalline silicon wafers We implemented two different mixed acidic solution treatments to obtain the improved surface structure of silicon wafer without much sacrifice of the silicon wafer thickness. At the first step, the silicon wafer was dipped into the mixed acidic solution of $HF:HNO_3$=1:2 ration for polished surface and at the second step, it was dipped into the diluted mixed acidic solution of $HF:HNO_3:H_2O$=7:3:10 ratio for porous structure. This double treatment to the silicon wafer brought lower reflectance (25% to 6%) and longer carrier lifetime ($0.15\;{\mu}s$ to $0.39\;{\mu}s$) comparing to the bare poly-crystalline silicon wafer. With optimizing the concentration ratio and the dilution ratio, we can not only effectively substitute the time consuming process of SDR to some extent but also skip plasma enhanced chemical vapor deposition (PECVD) process. Moreover, to conduct alkali texture for pyramidal structure on silicon wafer surface, we can use only nitric acid rich solution of the mixed acidic solution treatment instead of implementing SDR.

  • PDF

The Study of Silicon Nitride Passivation Layer on OLED ($Si_3N_4$ 페시베이션 박막이 유기발광다이오드 소자에 주는 영향 연구)

  • Park, Il-Houng;Kim, Kwan-Do;Shin, Hoon-Kyu;Yoon, Jae-Kyoung;Yun, Won-Min;Kwon, Oh-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.332-333
    • /
    • 2009
  • In this paper, we have deposited silicon nitride films by plasma-enhanced chemical vapor deposition (PECVD). For films deposited under optimized conditions, the mechanism of plasma-enhanced vapor deposition of silicon nitride is studied by varying process parameters such as rf power, gas ratio, and chamber pressure. It was demonstrated that organic light-emitting diode(OLEDs) were fabricated with the inorganic passivation layer processing. We have been studied the inorganic film encapsulation effect for organic light-emitting diodes (OLED). To evaluate the passivation layer, we have carried out the fabrication of OLEDs and investigate with luminescence and MOCON.

  • PDF

Study the Properties of Silicon Nitride Films prepared by High Density Plasma Chemical Vapor Deposition

  • Gangopadhyay, Utpal;Kim, Do-Young;Parm, Igor Oskarovich.;Chakrabarty, Kaustuv;Kim, Chi-Hyung;Shim, Myung-Suk;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1127-1130
    • /
    • 2003
  • The characteristics of silicon nitride films deposited in a planar coil reactor using a simple high-density inductively coupled plasma chemical vapor deposition technique have been investigated. The process gases used during silicon nitride deposition cycle were pure nitrogen and a mixture of silane and helium. It has been pointed out that the strong H-atom released from the growing SiN film and Si-N bond healing are responsible for the improved electrical and passivation properties of SiN.

  • PDF

A Vapor Sensor Based on a Porous Silicon Microcavity for the Determination of Solvent Solutions

  • Bui, Huy;Nguyen, Thuy Van;Nguyen, The Anh;Pham, Thanh Binh;Dang, Quoc Trung;Do, Thuy Chi;Ngo, Quang Minh;Coisson, Roberto;Pham, Van Hoi
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.301-306
    • /
    • 2014
  • A porous silicon microcavity (PSMC) sensor has been made for vapors of solvent solutions, and a method has been developed in order to obtain simultaneous determination of two volatile substances with different concentrations. In our work, the temperature of the solution and the velocity of the air stream flowing through the solution have been used to control the response of the sensor for ethanol and acetone solutions. We study the dependence of the cavity-resonant wavelength shift on solvent concentration, velocity of the airflow and solution temperature. The wavelength shift depends linearly on concentration and increases with solution temperature and velocity of the airflow. The dependence of the wavelength shift on the solution temperature in the measurement contains properties of the temperature dependence of the solvent vapor pressure, which characterizes each solvent. As a result, the dependence of the wavelength shift on the solution temperature discriminates between solutions of ethanol and acetone with different concentrations. This suggests a possibility for the simultaneous determination of the volatile substances and their concentrations.