• 제목/요약/키워드: Silicon texturing

검색결과 108건 처리시간 0.022초

표면 텍스쳐링 크기와 밀도가 후면 전극 실리콘 태양전지에 미치는 영향 (A effect of the back contact silicon solar cell with surface texturing size and density)

  • 장왕근;장윤석;박정호
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.112.1-112.1
    • /
    • 2011
  • The back contact solar cell (BCSC) has several advantages compared to the conventional solar cell since it can reduce grid shadowing loss and contact resistance between the electrode and the silicon substrate. This paper presents the effect of the surface texturing of the silicon BCSC by varying the texturing depth or the texturing gap in the commercially available simulation software, ATHENA and ATLAS of the company SILVACO. The texturing depth was varied from $5{\mu}m$ to $150{\mu}m$ and the texturing gap was varied from $1{\mu}m$ to $100{\mu}m$ in the simulation. The resulting efficiency of the silicon BCSC was evaluated depending on the texturing condition. The quantum efficiency and the I-V curve of the designed silicon BCSC was also obtained for the analysis since they are closely related with the solar cell efficiency. Other parameters of the simulated silicon BCSC are as follows. The substrate was an n-type silicon, which was doped with phosphorous at $6{\times}10^{15}cm^{-3}$, and its thickness was $180{\mu}m$, a typical thickness of commercial solar cell substrate thickness. The back surface field (BSF) was $1{\times}10^{20}\;cm^{-3}$ and the doping concentration of a boron doped emitter was $8.5{\times}10^{19}\;cm^{-3}$. The pitch of the silicon BCSC was $1250{\mu}m$ and the anti-reflection coating (ARC) SiN thickness was $0.079{\mu}m$. It was assumed that the texturing was anisotropic etching of crystalline silicon, resulting in texturing angle of 54.7 degrees. The best efficiency was 25.6264% when texturing depth was $50{\mu}m$ with zero texturing gap in case of low texturing depth (< $100{\mu}m$).

  • PDF

Industry Applicable Future Texturing Process for Diamond wire sawed Multi-crystalline Silicon Solar Cells: A review

  • Ju, Minkyu;Lee, Youn-Jung;Balaji, Nagarajan;Cho, Young Hyun;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • 제6권1호
    • /
    • pp.1-11
    • /
    • 2018
  • Current major photovoltaic (PV) market share (> 60%) is being occupied by the multicrystalline (mc)-silicon solar cells despite of low efficiency compared to single crystalline silicon solar cells. The diamond wire sawing technology reduces the production cost of crystalline silicon solar cells, it increases the optical loss for the existing mc-silicon solar cells and hence its efficiency is low in the current mass production line. To overcome the optical loss in the mc-crystalline silicon, caused by the diamond wire sawing, next generation texturing process is being investigated by various research groups for the PV industry. In this review, the limitation of surface structure and optical loss due to the reflectivity of conventional mc-silicon solar cells are explained by the typical texturing mechanism. Various texturing technologies that could minimize the optical loss of mc-silicon solar cells are explained. Finally, next generation texturing technology to survive in the fierce cost competition of photovoltaic market is discussed.

다결정 실리콘 태양전지의 광학적 손실 감소를 위한 표면 텍스쳐링에 관한 연구 (Investigation of surface texturing to reduce optical losses for multicrystalline silicon solar cells)

  • 김지선;김범호;이수홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.264-267
    • /
    • 2007
  • It is important to reduce optical losses from front surface reflection to improve the efficiency of crystalline silicon solar cells. Surface texturing by isotropic etching with acid solution based on HF and $HNO_3$ is one of the promising methods that can reduce surface reflectance. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its various grain orientations. In this paper, we textured multicrystalline silicon wafers by simple wet chemical etching using acid solution to reduce front surface reflectance. After that, surface morphology of textured wafer was observed by Scanning Electron Microscope(SEM) and Atomic Force Microscope(AFM), surface reflectance was measured in wavelength from 400nm to 1000nm. We obtained 29.29% surface reflectance by isotropic texturing with acid solution in wavelength from 400nm to 1000nm for fabrication of multicrystalline silicon solar cells.

  • PDF

Acid Texturing에 의한 태양전지용 다결정 실리콘 기판의 표면 반사율 감소 (Surface Reflectance Reduction of Multicrystalline Silicon Wafers for Solar Cells by Acid Texturing)

  • 김지선;김범호;이수홍
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.99-103
    • /
    • 2008
  • To improve efficiency of solar cells, it is important to make a light trapping structure to reduce surface reflectance for increasing absorption of sun light within the solar cells. One of the promising methods that can reduce surface reflectance is isotropic texturing with acid solution based on hydrofluoric acid(HF), nitric acid($HNO_3$), and organic additives. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its different grain orientation. Isotropic texturing with acid solution can uniformly etch multicrystalline silicon wafers unrelated with grain orientation, so we can get low surface reflectance. In this paper, the acid texturing solution is made up of only HF and $HNO_3$ for easy controlling the concentration and low cost compared to acid solution with organic additives. $HNO_3$ concentration and dipping time were varied to find the condition of minimum surface reflectance. Textured surfaces were observed Scanning Electron Microscope(SEM) and surface reflectance were measured. The best result of arithmetic mean(wavelength from 400 nm to 1000 nm) reflectance with acid texturing is 4.64 % less than alkali texturing.

Acid Texturing에 의한 다결정 실리콘 태양전지의 표면 반사율 감소에 대한 연구 (Investigation of Surface Reflectance Reduction for Multicrystalline Silicon Solar Cells with Acid Texturing)

  • 김지선;김범호;이은주;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.16-17
    • /
    • 2007
  • To improve efficiency of solar cells, it is important to make a light trapping structure to reduce surface reflectance for increasing absorption of sun light within the solar cells. One of the promising methods that can reduce surface reflectance is isotropic texturing with acid solution based on hydrofluoric acid(HF), nitric acid($HNO_3$), and organic additives. Anisotropic texturing with alkali solution is not suitable for multicrystalline silicon wafers because of its different grain orientation. Isotropic texturing with acid solution can uniformly etch multicrystalline silicon wafers unrelated with grain orientation, so we can get low surface reflectance. In this paper, the acid texturing solution is made up of only HF and $HNO_3$ for easy controling the concentration and low cost compared to acid solution with organic additives. $HNO_3$ concentration and dipping time were varied to find the condition of minimum surface reflectance. Textured surfaces were observed Scanning Electron Microscope(SEM) and surface reflectance were measured. The best result of arithmetic mean(wavelength from 400nm to 1000nm) reflectance with acid texturing is 4.64% less than alkali texturing.

  • PDF

웨이퍼 접착 텍스쳐링을 이용한 결정질 실리콘 태양전지 고효율화 연구 (Texturing of Two Adhered Wafers for High Efficiency Crystalline Silicon Solar Cells)

  • 임형래;주광식;노시철;최정호;정종대;서화일
    • 반도체디스플레이기술학회지
    • /
    • 제13권3호
    • /
    • pp.21-25
    • /
    • 2014
  • The texturing is one of the most important processes for high efficiency crystalline silicon solar cells. The rear side flatness of silicon solar cell is very important for increasing the light reflectance and forming uniform back surface field(BSF) region in manufacturing high efficiency crystalline silicon solar cells. We investigated texturing difference between front and rear side of wafer by texturing of two adhered wafers. As a result, the flatter rear side was obtained by forming less pyramid size compared to the front side and improved reflectance of long wavelength and back surface field(BSF) region were also achieved. Therefore, the texturing of two adhered wafers can be expected to improve the efficiency of silicon solar cells due to increased short circuit current(Isc).

Fiber Laser를 이용한 다결정 태양전지 Surface Texturing

  • 김태훈;김선용;고지수;박홍진;김광열;최병덕
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.270-270
    • /
    • 2009
  • The surface texturing technology is one of the methods to improve the efficiency of crystalline silicon solar cell. This process reduced the reflectance at the surface by the so-called double bounce effect and increased the light trapping. Among these surface texturing technology, the laser texturing is effective for multi-crystalline silicon solar cells which have random crystallographic directions. We investigated the characteristics of laser processing on the surface of the multi-crystalline silicon solar cells using the fiber laser.

  • PDF

BIPV용 건식 및 습식 텍스쳐링 공정에 의한 다결정실리콘 태양전지 모듈 특성 연구 (A Study of Characterization of Multi-Crystalline Silicon Solar Cell Module using by RIE and Wet Texturing for BIPV)

  • 서일원;윤명수;조태훈;손찬희;차성호;이상두;권기청
    • 신재생에너지
    • /
    • 제9권2호
    • /
    • pp.30-39
    • /
    • 2013
  • Multi-crystalline silicon solar cells is not exist a specific crystal direction different from single crystalline silicon solar cells. In functional materials, therefore, isotropic wet etching of mc-Si solar cell is easy the acid solution rather than the alkaline solution. The reflectance of wet texturing process is about 25% and the reflectance of RIE texturing process is achieved less than 10%. In addition, wet texturing has many disadvantages as well as reflectance. So wet texturing process has been replaced by a RIE texturing process. In order to apply BIPV, RIE and wet textured multi-crystalline silicon solar cell modules was manufactured by different kind of EVA sheet. Moreover, in case of BIPV, the short circuit current characteristics according to the angle of incidence is more important, because the installation of BIPV is fixed location. In this study, we has measured SEM image and I-V curve of RIE and wet textured silicon solar cell and PV module. Also we has analyzed quantum efficiency characteristics of RIE and wet textured silicon solar cell for PV modules depending on incidence angle.

단결정 실리콘 태양전지의 통계적 접근 방법을 이용한 texturing 공정 최적화 (Statistical approach to obtain the process optimization of texturing for mono crystalline silicon solar cell: using robust design)

  • 김범호;김회창;남동헌;조영현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.47.2-47.2
    • /
    • 2010
  • 텍스쳐링은 태양전지 표면에 어떠한 "요철"을 만들거나 거칠게 만들어 빛이 반사되는 면을 최대한 늘리는 구조를 만드는 공정으로 anti-reflection coating과 같이 태양전지에 입사되는 빛의 반사를 최소화 시키는데 그 목적이 있다. 단결정 실리콘 웨이퍼의 경우 표면에 피라미드 구조를 형성하는 것이 텍스쳐링 공정인데, 수산화칼륨과 이소프로필 알콜의 혼합용액으로 인해 식각되는 웨이퍼 표면이 작은 "pellet"으로 시작하여 그 크기와 수가 점점 증가하여 피라미드의 형태를 갖춰가는 방법으로 진행된다. 이와 같은 텍스쳐링 공정의 성패를 좌우하는 가장 큰 이슈는 "식각률"이다. 이 식각률에 영향을 주는 인자는 그 종류가 많으나 온도, 시간, KOH 농도(비율) 세 가지로 압축할 수 있다. 또 다른 요소인 Bath 내 chemical flow 및 Bubbling은 정량화하기 어렵고, 이용 장비가 변경되면 공정 조건 또한 변경되기 때문이다. 본 논문에서는 단결정 실리콘 웨이퍼에 적용하는 최적의 텍스쳐링 조건을 수립하기 위해 주요 공정변수를 온도, 시간, KOH 농도로 정하고, 다구치 방법을 사용하여 주요공정변수의 범위를 정하였으며, 보다 완벽한 강건설계를 위하여 3인자 3수준의 망소특성으로 설계하였다. 그 결과 반사율과 식각률의 경향성을 파악하여 주요 변수들 간 최적의 조건을 찾을 수 있었다.

  • PDF

알카리 식각과 반응성 이온 식각을 이용한 결정질 실리콘 2단계 표면 조직화 공정 (Two Step Texturing Using RIE and Wet Etching for Crystalline Silicon Solar Cell)

  • 여인환;박주억;김준희;조해성;임동건
    • 한국전기전자재료학회논문지
    • /
    • 제26권2호
    • /
    • pp.140-143
    • /
    • 2013
  • Lowering surface reflectance of silicon wafer by texturization is one of the most important processes to improve the efficiency of silicon solar cells. Generally, the texturing of crystalline silicon was carried out using alkaline solution. The average reflectance of this method was 11% at the wavelength between 400 and 1,000 nm. In this study, the wafers were first texturing by NaOH solution at $80^{\circ}C$ for 35 min. Then the wafers were texturing by $SF_6$ and $O_2$ plasma in RIE (Reactive Ion Etching). The average reflectance of two step texturing was reduced to below 5% at the wavelength between 400 and 1,000 nm.